Since TREE is a computable function the BB function grows faster than it, but TREE seems to grow much more quickly early on, so when does Busy Beaver surpass it?
2026-02-22 18:28:23.1771784903
When does the busy beaver function surpass TREE(n)?
2.8k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in TREES
- Explanation for the static degree sort algorithm of Deo et al.
- Finding height of a $k$-ary tree
- Clique-width of a tree
- count "informative" paths in tree
- If the weight of edge E $e$ of an MST is decreased by $\delta$. Could total weight of MST decrease by more than $\delta$.
- Probability of two randomly selected leaves of a tree to be connected only at the root
- Proof in graph theory: maximum degree and number of leaves.
- Graph Theory: Number of vertices in a tree.
- The number of, and an enumeration for, the set of full subtrees of the full complete binary tree
- Is the maximum link length function convex?
Related Questions in TURING-MACHINES
- Has the effort to confirm $\Sigma(5)$ and the search for new champions with $6$ states been stopped?
- Pop-up cards Turing complete?
- How does a cellular automaton "know" when to halt?
- Is the halting problem also undecideable for turing machines always writing a $1$ on the tape?
- Proof of "Extension" for Rice's Theorem
- Do we need enumeration to find the maximal number of steps a special Turing machine can make?
- Deciding wether a language is regular, in the arithmetic hierarchy
- Can a machine exist making more steps than the current record, which is no busy beaver?
- Can the halting problem for bounded Turing machines be efficiently decided?
- Can we efficiently determine the function $f(n,s)$?
Related Questions in UPPER-LOWER-BOUNDS
- Bound for difference between arithmetic and geometric mean
- Show that $\frac{1}{k}-\ln\left(\frac{k+1}{k}\right)$ is bounded by $\frac{1}{k^2}$
- Bounding Probability with Large Variance
- Connectivity of random graphs - proof $\frac{logn}{n}$ is threshold
- Natural log integral inequality
- Spectrum of a matrix after applying an element-wise function (e.g. elementwise log)
- Majorization form for a given set of integers in some interval.
- Proving $(λ^d + (1-λ^d)e^{(d-1)s})^{\frac{1}{1-d}}\leq\sum\limits_{n=0}^\infty\frac1{n!}λ^{\frac{(d^n-1)d}{d-1}+n}s^ne^{-λs}$
- Upper bound for distribution function of the standard normal distribution
- Show $0 < f'(x) \leqslant \frac{1}{2}$
Related Questions in BIG-NUMBERS
- What is $\underbrace{2018^{2018^{2018^{\mathstrut^{.^{.^{.^{2018}}}}}}}}_{p\,\text{times}}\pmod p$ where $p$ is an odd prime?
- Super-fast growing function exceeding Graham's number
- Is it true that $\underbrace{x^{x^{x^{.^{.^{.^x}}}}}}_{k\,\text{times}}\pmod9$ has period $18$ and can never take the values $3$ and $6$?
- Graham's Number on the Next Layer And TREE(3)
- Is there any function that like this function?
- Where does this array-based fast-growing function fall in the fast-growing hierarchy, and how does it compare to TREE(n)?
- There is a way to write TREE(3) via $F^a(n)$?
- (a / b) mod p for large a and b
- Sum of digits of sum of digits of sum of digits of $7^{7^{7^7}}$
- What is the largest number used in a useful mathematical proof that isn't just an upper or lower bound?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?