Let $X_1$ and $X_2$ be random variables such that $X_i \sim N(1, 1) $. Why is the constant removed in the case of the variance $$ \mathrm{V}(X_1 + X_2 - 2) = 1 + 1 = 2 $$ but not in the case of the expectation $$ \mathrm{E}(X_1 + X_2 - 2) = 1 + 1 - 2 = 0 \;? $$
2026-02-22 22:55:46.1771800946
Why are negative constants removed from variance?
231 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
2
There are 2 best solutions below
Related Questions in RANDOM-VARIABLES
- Prove that central limit theorem Is applicable to a new sequence
- Random variables in integrals, how to analyze?
- Convergence in distribution of a discretized random variable and generated sigma-algebras
- Determine the repartition of $Y$
- What is the name of concepts that are used to compare two values?
- Convergence of sequences of RV
- $\lim_{n \rightarrow \infty} P(S_n \leq \frac{3n}{2}+\sqrt3n)$
- PDF of the sum of two random variables integrates to >1
- Another definition for the support of a random variable
- Uniform distribution on the [0,2]
Related Questions in STATISTICAL-INFERENCE
- co-variance matrix of discrete multivariate random variable
- Question on completeness of sufficient statistic.
- Probability of tossing marbles,covariance
- Estimate the square root of the success probability of a Binomial Distribution.
- A consistent estimator for theta is?
- Using averages to measure the dispersion of data
- Confidence when inferring p in a binomial distribution
- A problem on Maximum likelihood estimator of $\theta$
- Derive unbiased estimator for $\theta$ when $X_i\sim f(x\mid\theta)=\frac{2x}{\theta^2}\mathbb{1}_{(0,\theta)}(x)$
- Show that $\max(X_1,\ldots,X_n)$ is a sufficient statistic.
Related Questions in VARIANCE
- Proof that $\mathrm{Var}\bigg(\frac{1}{n} \sum_{i=1}^nY_i\bigg) = \frac{1}{n}\mathrm{Var}(Y_1)$
- $\{ X_{i} \}_{i=1}^{n} \thicksim iid N(\theta, 1)$. What is distribution of $X_{2} - X_{1}$?
- Reason generalized linear model
- Variance of $\mathrm{Proj}_{\mathcal{R}(A^T)}(z)$ for $z \sim \mathcal{N}(0, I_m)$.
- Variance of a set of quaternions?
- Is the usage of unbiased estimator appropriate?
- Stochastic proof variance
- Bit of help gaining intuition about conditional expectation and variance
- Variance of $T_n = \min_i \{ X_i \} + \max_i \{ X_i \}$
- Compute the variance of $S = \sum\limits_{i = 1}^N X_i$, what did I do wrong?
Related Questions in EXPECTED-VALUE
- Show that $\operatorname{Cov}(X,X^2)=0$ if X is a continuous random variable with symmetric distribution around the origin
- Limit of the expectation in Galton-Watson-process using a Martingale
- Determine if an Estimator is Biased (Unusual Expectation Expression)
- Why are negative constants removed from variance?
- How to find $\mathbb{E}(X\mid\mathbf{1}_{X<Y})$ where $X,Y$ are i.i.d exponential variables?
- $X_1,X_2,X_3 \sim^{\text{i.i.d}} R(0,1)$. Find $E(\frac{X_1+X_2}{X_1+X_2+X_3})$
- How to calculate the conditional mean of $E(X\mid X<Y)$?
- Let X be a geometric random variable, show that $E[X(X-1)...(X-r+1)] = \frac{r!(1-p)^r}{p^r}$
- Taylor expansion of expectation in financial modelling problem
- Probability question and die rolling
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
In very non math/statistical terms, variance measures how spread out the data is. Therefore, shifting the data by a constant term does not change how spread out the data is. However, the shift will change the the expected value of the data, because the expected value is the weighted average of the data values.