Inviscid burgers equation for fluid flowing upwards against gravity:
$$ u \frac{du}{dy} = -g $$
I can solve for the velocity profile by simple integration and applying Dirichlet b.c. $u(0)=u_0$: $$ u(y) = \sqrt{u_0^2 - 2gy} $$
Now how to solve the viscous case $$ \rho u \frac{du}{dy} = \mu \frac{d^2u}{dy^2} - \rho g $$ with B.C. $u(0)=u_0$ and $du/dy(0)=0$ ?
A series solution can be build as follows.
Make $u=\sum_{k=0}^n a_k y^k$ and substitute into the equation resulting the linear system. Here $n=5$
$$ \left( \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ a_1 \rho & a_0 \rho & -2 \mu & 0 & 0 & 0 \\ 2 a_2 \rho & 2 a_1 \rho & 2 a_0 \rho & -6 \mu & 0 & 0 \\ 3 a_3 \rho & 3 a_2 \rho & 3 a_1 \rho & 3 a_0 \rho & -12 \mu & 0 \\ 4 a_4 \rho & 4 a_3 \rho & 4 a_2 \rho & 4 a_1 \rho & 4 a_0 \rho & -20 \mu \\ \end{array} \right)\left(\begin{array}{c}a_0\\ a_1\\a_2\\a_3\\a_4\\a_5\end{array}\right)= \left(\begin{array}{c}u_0\\ 0\\-\rho g\\0\\0\\0\end{array}\right) $$
Follows a MATHEMATICA script which handles the algebra