If for example $f(x_1,x_2,x_3,x_4)= x_1- \sin(x_3)$ is a nonlinear function of $(x_1,x_2,x_3,x_4)$, how can be understood that for example $\frac{df(x_1,x_2,x_3,x_4)}{dx_3}$ is invertible or not ?
2026-02-22 21:26:55.1771795615
Determination of Invertibility
43 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in INVERSE
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Proving whether a matrix is invertible
- Proof verification : Assume $A$ is a $n×m$ matrix, and $B$ is $m×n$. Prove that $AB$, an $n×n$ matrix is not invertible, if $n>m$.
- Help with proof or counterexample: $A^3=0 \implies I_n+A$ is invertible
- Show that if $a_1,\ldots,a_n$ are elements of a group then $(a_1\cdots a_n)^{-1} =a_n^{-1} \cdots a_1^{-1}$
- Simplifying $\tan^{-1} {\cot(\frac{-1}4)}$
- Invertible matrix and inverse matrix
- show $f(x)=f^{-1}(x)=x-\ln(e^x-1)$
- Inverse matrix for $M_{kn}=\frac{i^{(k-n)}}{2^n}\sum_{j=0}^{n} (-1)^j \binom{n}{j}(n-2j)^k$
- What is the determinant modulo 2?
Related Questions in NONLINEAR-SYSTEM
- Solving special (simple?) system of polynomial equations (only up to second degree)
- Determination of Invertibility
- Question about stability of a nonlinear dynamical system
- The equation $x^T A x = (x^2)^T A x^2$
- 1D viscous flow upwards against gravity
- Convergence of fixed-point in a gauss-seidel style
- Intuition behind dense orbits
- Determine the stability properties and convergence in the origin using Lyapunov Direct Method
- Why this field with non-zero curl has closed orbit?
- Where can I solve a system of non-linear inequalities
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There is no straightforward, always-working, follow-these-steps-to-get-what-you-need answer to your question. In general, proving that a function is invertible can be a very hard thing to do.
However, in your case, it's simple. Since $f$ is independent of $x_2$, it is not invertible (for example, $f(0,0,0,0) = f(0,1,0,0)$). The same is true for all its derivatives.