3 distinct points are on the graph $y=4x^2$ The x coordinates form an arithmetic sequence while the y coordinates form a geometric sequence, what are the possible values of the common ratio?
Naming the points : $(A,4A^2), (B, 4B^2), (C, 4C^2)$
X = common difference r = common ratio
Equations: $A+x = B; B+x =C$
$A^2(r) = B^2; B^2(r)=C^2$
Solving for x
$A^2(r) = (A+x)^2$
I get $x=(-A\pm A\sqrt{r})/2$
then $B^2(r) = C^2$
$A^2(r^2)=(A+2x)^2$
$A^2(r^2)=(A-A\pm A\sqrt{r})^2$
which results in $r=1$ or $r=0$
Where did i go wrong?
$x=(-2A\pm 2A\sqrt r)/2=-A\pm A\sqrt r$, not $x=(-A\pm A\sqrt r)/2$.
Continuing from $A^2(r^2)=(A+2x)^2$,
$$A^2(r^2)=(A-2A\pm 2A\sqrt r)^2\\ A^2(r^2)=(-A\pm 2A\sqrt r)^2\\ A^2(r^2)=A^2+4A^2r\pm4A^2\sqrt r\\ r^2=1+4r\pm4\sqrt r\\ r^2-4r-1=\pm\sqrt{16r}\text.$$
Squaring both sides, $$r^4+16r^2+1-8r^3-2r^2+8r=16r\\ r^4-8r^3+14r^2-8r+1=0\\ (r-1)^2(r^2-6r+1)=0\\ r=1\lor r=3\pm2\sqrt2\text.$$
Consider that $A,B,C$ are distinct, so $r\ne1$. Therefore, $$r=3\pm2\sqrt2\text.$$