I am looking for a continuous function $f\colon I\to X$ from the unit interval $I=[0,1]$ into a Hausdorff space $X$ such that its image $f(I)$ has dimension one and cannot be embedded into $\mathbb{R}^3$. Hausdorff spaces which are continuous images of $I$ are sometimes referred to as Peano continua. Every such space can be embedded into $\mathbb{R}^\omega$. It is not difficult to find a one-dimensional Peano continuum that can be embedded into $\mathbb{R}^2$ but not into $\mathbb{R}$ (a circle), or one that can be embedded into $\mathbb{R}^3$ but not into $\mathbb{R}^2$ (any non-planar finite graph). As any finite graph can be embedded into $\mathbb{R}^3$ (using so called book embedding), I am curious whether there exist a one-dimensional Peano continuum that cannot be embedded into $\mathbb{R}^3$.
2026-02-22 19:49:48.1771789788
A one-dimensional Peano continuum that is not embeddable into $\mathbb{R}^3$
160 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GENERAL-TOPOLOGY
- Is every non-locally compact metric space totally disconnected?
- Let X be a topological space and let A be a subset of X
- Continuity, preimage of an open set of $\mathbb R^2$
- Question on minimizing the infimum distance of a point from a non compact set
- Is hedgehog of countable spininess separable space?
- Nonclosed set in $ \mathbb{R}^2 $
- I cannot understand that $\mathfrak{O} := \{\{\}, \{1\}, \{1, 2\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\}$ is a topology on the set $\{1, 2, 3\}$.
- If for every continuous function $\phi$, the function $\phi \circ f$ is continuous, then $f$ is continuous.
- Defining a homotopy on an annulus
- Triangle inequality for metric space where the metric is angles between vectors
Related Questions in DIMENSION-THEORY-ANALYSIS
- Codimension of intersection of zero sets of polynomials.
- How many points define a sphere of unknown radius?
- Some problems related to unirational varieties
- Generate uniformly distributed points in n-dimensional sphere
- Dimension of solutions of EDP
- Does the boundary of the Mandelbrot set $M$ have empty interior?
- A one-dimensional Peano continuum that is not embeddable into $\mathbb{R}^3$
- Embedding preference orders in 2D Euclidean space
- Can a variety "of dimension $\geqslant 1$" be finite?
- Can you hear the pins fall from bowling game scores?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Any separable metrisable space of dimension 1 (all standard dimension functions will do, covering or inductive, they all coincide for separable metric spaces, like Peano continua) has an embedding into $\mathbb{R}^3$. (This is Nöbeling's embedding theorem). It can be generalised to $n$ and $2n+1$ in fact. See Engelking, Theory of Dimensions, finite and infinite Thms 1.11.4 and 1.11.5.