I'm trying to find a way to evaluate this sum (found by Haldane in Phys. Rev. Lett. 60, 635 (1988): $$S_{pq}=\sum_{n=1}^{N-1} z^{nJ} (1-z^{n})^{p-1}(1-z^{-n})^{q-1}$$ with $z= e^{\frac{2i\pi}{N}}$ and $0\leq J\leq N$ if someone have an idea, let me know, Thanks
2026-02-22 19:27:23.1771788443
A Tricky sum to evaluate (Haldane)
70 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in SUMMATION
- Computing:$\sum_{n=0}^\infty\frac{3^n}{n!(n+3)}$
- Prove that $1+{1\over 1+{1\over 1+{1\over 1+{1\over 1+...}}}}=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+...}}}}$
- Fourier series. Find the sum $\sum_{n=1}^\infty \frac{(-1)^{n+1}}{2n+1}$
- Sigma (sum) Problem
- How to prove the inequality $\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n-1}\geq \log (2)$?
- Double-exponential sum (maybe it telescopes?)
- Simplify $\prod_{k=1}^{l} \sum_{r=d}^m {{m}\choose{r}} \left(N-k \right)^{r} k^{m-r+1}$
- Sum of two martingales
- How can we prove that $e^{-jωn}$ converges at $0$ while n -> infinity?
- Interesting inequalities
Related Questions in INTEGRABLE-SYSTEMS
- Action-angle variables in non-compact level sets
- Inverse scattering transform and GLM (Gel'fand-Levitan-Marchenko) equation
- Finding action-angle variables for integrable maps
- A conserved quantity reduces the dimension of the system?
- there seems to be a statement that is provable in integrable system, please let me know where can I learn about this statement.
- Quantizing solutions to the reflection algebra
- integrability of system of SDE relative to Langevin dynamics
- unsure how to expand a LAX pair for KDV equation
- Constants of motion for a system of two points moving on spherical surface with a force depending only on their relative distance
- A Tricky sum to evaluate (Haldane)
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Hint: You can use the binomial expansion and then simplify back with the N-th roots of the unit $\exp{(\frac{2i\pi}{N})}$.