Let $L/K$ be a finite Galois extension of global fields, with $G=\mathrm{Gal}(L/K)$. Let $H \leq G$ and $\chi:H \to \mathbb{C}$ a non-trivial irreducible character of $H$. Then we can define the (Artin) $L$-function $$L(L^H,\chi,s)$$ in the usual way. Suppose that $N$ is a normal subgroup of $G$ containing $\ker(\chi)$. Then there is an isomorphism $$\varphi:HN/N \to H/(H \cap N).$$ We can pull back $\varphi^*\chi$ to obtain a non-trivial irreducible character of $HN/N$. There is then an associated $L$-function $$L(L^{HN},\varphi^*\chi,s).$$ My question: What can we say, if anything, about the relationship between these two $L$-functions? I am mainly interested in the case where $N=[G,G]$ and $\chi$ is a linear character of $H$ (i.e., if I replace $L^H$ with the corresponding subfield of $L^\mathrm{ab}$, how does the $L$-function of $\chi$ change?).
2026-02-22 19:48:48.1771789728
Artin $L$-functions and abelianization
75 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ALGEBRAIC-NUMBER-THEORY
- Splitting of a prime in a number field
- algebraic integers of $x^4 -10x^2 +1$
- Writing fractions in number fields with coprime numerator and denominator
- Tensor product commutes with infinite products
- Introduction to jacobi modular forms
- Inclusions in tensor products
- Find the degree of the algebraic numbers
- Exercise 15.10 in Cox's Book (first part)
- Direct product and absolut norm
- Splitting of primes in a Galois extension
Related Questions in ANALYTIC-NUMBER-THEORY
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- question regarding nth prime related to Bertrands postulate.
- Alternating sequence of ascending power of 2
- Reference for proof of Landau's prime ideal theorem (English)
- Does converge $\sum_{n=2}^\infty\frac{1}{\varphi(p_n-2)-1+p_n}$, where $\varphi(n)$ is the Euler's totient function and $p_n$ the $n$th prime number?
- On the behaviour of $\frac{1}{N}\sum_{k=1}^N\frac{\pi(\varphi(k)+N)}{\varphi(\pi(k)+N)}$ as $N\to\infty$
- Easy way to prove that the number of primes up to $n$ is $\Omega(n^{\epsilon})$
- Eisenstein Series, discriminant and cusp forms
- Convergence of $\sum_{n=1}^{\infty}\frac{\mu(n)\chi(n)}{n^s}$ on $\Re{s}=1$
Related Questions in GALOIS-REPRESENTATIONS
- condition of potentially good reduction of representations
- Galois representation on Tate module of a twist of an elliptic curve
- Artin Representations in MAGMA
- Explicit formula to compute the conductor of Etale cohomology?
- Why do these elliptic curves of conductor $11$ have different representations modulo $5$?
- Hilbert 90 and K-forms
- Constuct the element of Galois group of rational number
- Notation for the local polynomial of a Weil representation
- topology on the ring of Witt vectors in the theory of period rings of Fontaine
- Correspondence for Artin characters
Related Questions in L-FUNCTIONS
- Reference for $L$-functions of curves
- Understanding a result of Serre about zeros of $x^3 - x - 1$ in $\mathbb{F}_p$
- Analytic continuation of twisted Hecke $L$-function
- Why does the determinant come in for Artin L-Functions?
- Why does the Dedekind zeta function of a number field have a pole at $s=1$?
- Artin $L$-functions and abelianization
- Simplest nontrivial example of an L-function yielding information about a Diophantine equation
- Upper bound on zero multiplicity of Dirichlet $L$-functions
- Roadmap to Iwasawa Theory
- The $\heartsuit$ operator on $\mathcal{L}^2(SL_2(\mathbb{Z})\backslash \mathbb{H})$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?