I'm aware of finding asymptotes of hyperbola using oblique asymptote but there is another way : put the standard equation of hyperbola equal zero (i.e. $ x^2/a^2 - y^2/b^2 = 0$) .
Why this method is right ? How we can explain it probably geometrically ?

Setting $$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$ and we consider the Case $$y=b\sqrt{\frac{x^2}{a^2}-1}$$ and we assume $$y=mx+n$$ is an equation for the asymptotes. then we have$$\lim_{x\to \infty}\frac{\left(\frac{b^2}{a^2}-m^2\right)x^2+2mnx-(b^2+n^2)}{b\sqrt{\frac{x^2}{a^2}-1}+mx+n}$$ this is equal to $$\lim_{x ßto 0}\frac{\left(\frac{b^2}{a^2}-m^2\right)x^2-2mnx-(b^2+n^2)}{\left(\frac{b}{a}+m\right)x}$$ and we get from here $$m=\frac{b}{a},n=0$$ so we obtain $$y=\frac{b}{a}x$$as one asymptote. The other one is $$y=-\frac{b}{a}x$$