Let $\;C\;$ be a circle with diameter $XY$ and let $P$ be a point not on the line $XY.$ Then
(1). If $P$ is on the circle $C,$ then $\angle XPY = 90^{\circ}$
(2). If $P$ is inside the circle $C,$ then $\angle XPY >90^{\circ}$
(3). If $P$ is outside the circle $C,$ then $\angle XPY < 90^{\circ}$
How to prove the statements (2) & (3)?
Any help would be appreciated. Thank you.

2) Produce $XP$ to meet the circle at $Q$. Then $\angle XQY=90^\circ$ and $\angle XPY>\angle XQY$.
3) Suppose that $XP$ meets the circle at $R$. Then $\angle XRY=90^\circ$ and $\angle XPY<\angle XRY$.