I'd like a reference for a very basic definition of stacks Kashiwara's paper almost does it except for example writing such as for every open set U in the cover there is a cat C(U) so U --> C(U) is a functor to the category of categories?
2026-02-22 23:22:29.1771802549
basic reference for stacks
217 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COHERENT-SHEAVES
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- Adjunction isomorphism in algebraic geometry
- What is a bilinear map of $O_X$ modules?
- Splitting of $f_*\mathcal O_X$
- Semi-stable locally free sheaves on a curve of constant slope form an abelian category
- On a cyclic cover of genus 5 of a curve of genus 1
- On the support of sheaf of modules or quasi-coherent sheaves over ringed spaces
- Direct image of coherent analytic sheaves
- degrees of line bundles over $y^2 = x^3 + 1$
- Reference for sheaf theory
Related Questions in TOPOLOGICAL-STACKS
- Minimal site that induces a stack from a psuedofunctor
- "Category" of (pre)stacks over a fixed category/site
- Grothendieck topology on stacks/fibred category
- Understanding Sheaves and Stacks
- Why model categories in theory of stacks?
- basic reference for stacks
- Stackification of finite categories
- Simplicial manifolds which do not satisfy Kan condition locally?
- Is there a more general obstruction to the existence of moduli spaces than the existence of automorphisms?
- How many sequences possible in stack , if the input(1,2,3,...,n) is in order?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Dear professor Stasheff,
I suggest you the following papers:
I hope I was helpful,
best regards.
Armando