This question Characterize commutative rings over which any module $M$ satisfies $\operatorname{Supp}(M)=V(\operatorname{Ann} M)$ asks to characterize commutative rings over which support of modules are of special form. Is there an analog of that question and answer to the case of sheaf of modules or quasi-coherent sheaves over general ringed-spaces or schemes ?
2026-02-22 21:52:23.1771797143
On the support of sheaf of modules or quasi-coherent sheaves over ringed spaces
84 Views Asked by user495643 https://math.techqa.club/user/user495643/detail AtRelated Questions in COMMUTATIVE-ALGEBRA
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Extending a linear action to monomials of higher degree
- Tensor product commutes with infinite products
- Example of simple modules
- Describe explicitly a minimal free resolution
- Ideals of $k[[x,y]]$
- $k[[x,y]]/I$ is a Gorenstein ring implies that $I$ is generated by 2 elements
- There is no ring map $\mathbb C[x] \to \mathbb C[x]$ swapping the prime ideals $(x-1)$ and $(x)$
- Inclusions in tensor products
- Principal Ideal Ring which is not Integral
Related Questions in SHEAF-THEORY
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- Question about notation for Čech cohomology and direct image of sheaves in Hartshorne
- Does sheafification preserve surjectivity?
- Image of a morphism of chain complexes of sheaves via direct/inverse image functor
- Tensor of a $k[X]$ module with the structure sheaf of an affine variety is a sheaf
- Sheafy definition for the tangent space at a point on a manifold?
- Whats the relationship between a presheaf and its sheafification?
- First isomorphism theorem of sheaves -- do you need to sheafify if the map is surjective on basis sets?
- An irreducible topological space $X$ admits a constant sheaf iff it is indiscrete.
- Why does a globally generated invertible sheaf admit a global section not vanishing on any irreducible component?
Related Questions in SCHEMES
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- $\mathbb{C}[x,y]$ is the sections of Spec $\mathbb{C}[x,y]$ minus the origin?
- Finitely generated $k-$algebras of regular functions on an algebraic variety
- Is every open affine subscheme of an algebraic $k-$variety an affine $k-$variety?
- Scheme Theoretic Image (Hartshorne Ex.II.3.11.d)
- Is this a closed embedding of schemes?
- Adjunction isomorphism in algebraic geometry
- Closed connected subset of $\mathbb{P}_k^1$
- Why can't closed subschemes be defined in an easier way?
Related Questions in COHERENT-SHEAVES
- Do torsion-free $\mathcal{O}_X$-modules on curves have dimension one?
- Adjunction isomorphism in algebraic geometry
- What is a bilinear map of $O_X$ modules?
- Splitting of $f_*\mathcal O_X$
- Semi-stable locally free sheaves on a curve of constant slope form an abelian category
- On a cyclic cover of genus 5 of a curve of genus 1
- On the support of sheaf of modules or quasi-coherent sheaves over ringed spaces
- Direct image of coherent analytic sheaves
- degrees of line bundles over $y^2 = x^3 + 1$
- Computing the Grothendieck group of a polynomial ring (over a field) or affine n-space as a scheme?
Related Questions in QUASICOHERENT-SHEAVES
- Why is every sheaf of $\mathcal{O}_{X}$-modules not generated by global sections?
- Free module after tensoring with a flat local ring
- QCQS lemma for modules?
- Gaga and quasicoherent sheaf
- Counter-examples for quasi-coherent, coherent, locally free and invertible sheaves
- $f_* f^* \mathcal{G}= \mathcal{G}$ and $f^* f_* \mathcal{F}= \mathcal{F}$ for Quasicoherent Sheaves
- Why are the noetherian objects in a category of quasicoherent sheaves just the coherent ones?
- Is this exact: $0\to\mathcal{O}^{hol}\to\mathcal{O}(p)\to \Bbb{C}_p,$
- Quasicoherent sheaves on the groupoid of vector bundles on a surface
- Tensor product of sheaves over weighted projective spaces
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?