Suppose $Z$ is a random variable distributed according to binomial distribution $B(n,p)$. For constant $p$ it is known that the distribution can be well approximated by the normal distribution. If $pn$ is constant, then it converge to a Poisson distribution. What in the intermidiate case? For example to what is the limit distribution for $p=\Omega(\log(n)/n)$? Is there any known theorem, which specifies this case?
2026-02-22 21:15:30.1771794930
binomial normal with dependent success probability
82 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in NORMAL-DISTRIBUTION
- Expectation involving bivariate standard normal distribution
- How to get a joint distribution from two conditional distributions?
- Identity related to Brownian motion
- What's the distribution of a noncentral chi squared variable plus a constant?
- Show joint cdf is continuous
- Gamma distribution to normal approximation
- How to derive $E(XX^T)$?
- $\{ X_{i} \}_{i=1}^{n} \thicksim iid N(\theta, 1)$. What is distribution of $X_{2} - X_{1}$?
- Lindeberg condition fails, but a CLT still applies
- Estimating a normal distribution
Related Questions in BINOMIAL-DISTRIBUTION
- Given $X$ Poisson, and $f_{Y}(y\mid X = x)$, find $\mathbb{E}[X\mid Y]$
- Estimate the square root of the success probability of a Binomial Distribution.
- Choosing oranges. I'm going to lose my mind
- Probability:Binomial Distribution Mean and Variance Problem
- Probability Bookings in a Hotel
- Using Binomial Distribution to Find the Probability of Two of the Same evnts ocurring
- uniformly most powerful test: binomial distribution
- A share price grows $1+\epsilon$ times with prob. $p$ or falls $1-\epsilon$ times with prob. $1-p$ each day, what's its expected value after $n$ days?
- A baseball player hits the ball 35% of the time. In 10 opportunities, what is the probability of connecting more than 2 hits?
- Approximation of Normal to Binomial
Related Questions in PROBABILITY-LIMIT-THEOREMS
- weak limit similiar to central limit theorem
- What is the name of the method or process when a system is evaluated against the highest degree terms?
- Law of large numbers and a different model for the average of IID trials
- Prove that regression beta of order statistics converges to 1?
- How does this sequence of distributions converge?
- Determine limit distribution
- Relation between (non-random) Big O and probability little o
- How to derive approximation result from Levy 0-1 law?
- binomial normal with dependent success probability
- Obtaining the limiting probability of the random variable following mixed distribution
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The Poisson approximation still works in the $p=\Omega(\log( n)/n)$ case. According to Le Cam's inequality, the total variation distance between the actual binomial distribution and its approximating Poisson distribution is of order $np^2$, which in your case is $O((\log n)^2/n)$. Also note that the Poisson distribution with large expectation (in your case, $O(\log n)$) is itself approximated by the CLT, but not in total variation.
The specifics of your application will dictate both the order of growth of $pn$ and the desired degree of approximation of distributions, so I hesitate to give one recipe that fits all occasions. If, for instance, $np\to\infty$ and $np^2\to 0$, the Binomial is well approximated by the Poisson and the Poisson, after rescaling, by the Gaussian. If $np^2\to0$ but $np$ remains bounded, you lose the Gaussian approximation but retain the Poisson. But if $p=\Omega(1/\log n)$ Le Cam's inequality looses grip, at least when used this way.