Let's say I have a set of variables $a_1, ... ,a_n \in \{0, 1\}$ and a boolean algebra where multiplication is $\land$ and sum is $\oplus$ (exclusive or). This is like in bit operations in computers.
Let's define $c_n(k)$ as the sum of the products of all the ${n \choose k}$ $k$-combinations of the $n$ variables. For example:
$$c_3(1) = a_1 \oplus a_2 \oplus a_3$$ $$c_3(2) = a_1a_2 \oplus a_1a_3 \oplus a_2a_3 = a_1 \land a_2 \oplus a_1 \land a_3 \oplus a_2 \land a_3$$
I would like to be able to get a general formula for all $c_n(k)c_n(j)$ products. For example I can compute:
$$c_3(2)c_3(1) = c_3(3)$$ $$c_4(1)c_4(4) = 0$$
and obviously:
$$c_n(k)c_n(k) = c_n(k)$$
The formula could be restricted to some $n$ values only, but arbitrarily large, for example only to $n$ even or odd, or only e.g. $n = 2^m$, or $n = 2^{2m}$, or something else, if it is simpler.
Where to start? Should I use induction? Is there already some work done on this? Thank you for any idea!
After making a calculator program I was able to compute also the following:
$\small{c_3(1)c_3(3) = c_3(3)}$, $\small{c_3(2)c_3(3) = c_3(3)}$
$\small{c_4(1)c_4(2) = c_4(3)}$, $\small{c_4(1)c_4(3) = c_4(3)}$, $\small{c_4(1)c_4(4) = 0}$, $\small{c_4(2)c_4(3) = c_4(3)}$, $\small{c_4(2)c_4(4) = 0}$, $\small{c_4(3)c_4(4) = 0}$
$\small{c_5(1)c_5(2) = c_5(3)}$, $\small{c_5(1)c_5(3) = c_5(3)}$, $\small{c_5(1)c_5(4) = c_5(5)}$, $\small{c_5(1)c_5(5) = c_5(5)}$, $\small{c_5(2)c_5(3) = c_5(3)}$, $\small{c_5(2)c_5(4) = 0}$, $\small{c_5(2)c_5(5) = 0}$, $\small{c_5(3)c_5(4) = 0}$, $\small{c_5(3)c_5(5) = 0}$, $\small{c_5(4)c_5(5) = c_5(5)}$
$\small{c_6(1)c_6(2) = c_6(3)}$, $\small{c_6(1)c_6(3) = c_6(3) }$, $\small{c_6(1)c_6(4) = c_6(5)}$, $\small{c_6(1)c_6(5) = c_6(5)}$, $\small{c_6(1)c_6(6) = 0}$, $\small{c_6(2)c_6(3) = c_6(3)}$, $\small{c_6(2)c_6(4) = c_6(6)}$, $\small{c_6(2)c_6(5) = 0}$, $\small{c_6(2)c_6(6) = c_6(6)}$, $\small{c_6(3)c_6(4) = 0}$, $\small{c_6(3)c_6(5) = 0}$, $\small{c_6(3)c_6(6) = 0}$, $\small{c_6(4)c_6(5) = c_6(5)}$, $\small{c_6(4)c_6(6) = c_6(6)}$, $\small{c_6(5)c_6(6) = 0}$
$\small{c_7(1)c_7(2) = c_7(3)}$, $\small{c_7(1)c_7(3) = c_7(3)}$, $\small{c_7(1)c_7(4) = c_7(5)}$, $\small{c_7(1)c_7(5) = c_7(5)}$, $\small{c_7(1)c_7(6) = c_7(7)}$, $\small{c_7(1)c_7(7) = c_7(7)}$, $\small{c_7(2)c_7(3) = c_7(3)}$, $\small{c_7(2)c_7(4) = c_7(6)}$, $\small{c_7(2)c_7(5) = c_7(7)}$, $\small{c_7(2)c_7(6) = c_7(6)}$, $\small{c_7(2)c_7(7) = c_7(7)}$, $\small{c_7(3)c_7(4) = c_7(7)}$, $\small{c_7(3)c_7(5) = c_7(7)}$, $\small{c_7(3)c_7(6) = c_7(7)}$, $\small{c_7(3)c_7(7) = c_7(7)}$, $\small{c_7(4)c_7(5) = c_7(5)}$, $\small{c_7(4)c_7(6) = c_7(6)}$, $\small{c_7(4)c_7(7) = c_7(7)}$, $\small{c_7(5)c_7(6) = c_7(7)}$, $\small{c_7(5)c_7(7) = c_7(7)}$, $\small{c_7(6)c_7(7) = c_7(7)}$
$\small{c_8(1)c_8(2) = c_8(3)}$, $\small{c_8(1)c_8(3) = c_8(3)}$, $\small{c_8(1)c_8(4) = c_8(5)}$, $\small{c_8(1)c_8(5) = c_8(5)}$, $\small{c_8(1)c_8(6) = c_8(7)}$, $\small{c_8(1)c_8(7) = c_8(7)}$, $\small{c_8(1)c_8(8) = 0}$, $\small{c_8(2)c_8(3) = c_8(3)}$, $\small{c_8(2)c_8(4) = c_8(6)}$, $\small{c_8(2)c_8(5) = c_8(7)}$, $\small{c_8(2)c_8(6) = c_8(6)}$, $\small{c_8(2)c_8(7) = c_8(7)}$, $\small{c_8(2)c_8(8) = 0}$, $\small{c_8(3)c_8(4) = c_8(7)}$, $\small{c_8(3)c_8(5) = c_8(7)}$, $\small{c_8(3)c_8(6) = c_8(7)}$, $\small{c_8(3)c_8(7) = c_8(7)}$, $\small{c_8(3)c_8(8) = 0}$, $\small{c_8(4)c_8(5) = c_8(5)}$, $\small{c_8(4)c_8(6) = c_8(6)}$, $\small{c_8(4)c_8(7) = c_8(7)}$, $\small{c_8(4)c_8(8) = 0}$, $\small{c_8(5)c_8(6) = c_8(7)}$, $\small{c_8(5)c_8(7) = c_8(7)}$, $\small{c_8(5)c_8(8) = 0}$, $\small{c_8(6)c_8(7) = c_8(7)}$, $\small{c_8(6)c_8(8) = 0}$, $\small{c_8(7)c_8(8) = 0}$
Based on these experimental results I suspect that the formula might be something like this:
$$c_n(k)c_n(j) = \begin{cases} c_n(k \lor j), & \text{if $k < n$ and $j < n$} \\[2ex] 0, & \text{if $k = n$ and ${n \choose j}$ is even or $j = n$ and ${n \choose k}$ is even} \\[2ex] c_n(n), & \text{if $k = n$ and ${n \choose j}$ is odd or $j = n$ and ${n \choose k}$ is odd} \end{cases}$$
where $k \lor j$ is the number obtained as the bitwise OR of the binary representations of $k$ and $j$.
The elementary symmetric polynomials are related to your function by $$e_k(a_1,a_2,\dots,a_n)\equiv c_n(k)\pmod{2}$$ where multiplication mod $2$ is $\wedge$ and addition mod $2$ is $\oplus$. For completeness, let $c_n(0):=1$.
Vieta's formula is that a polynomial with roots $a_1,\dots,a_n$ with multiplicity is given by $f(x)=\sum_{i=0}^n(-1)^ie_i(a_1,\dots,a_n)x^{n-i}$. If we think of a particular assignment of $0$'s and $1$'s to $a_1,\dots,a_n$, then we can also write $f(x)=x^a(x-1)^b$, where $a,b$ are the numbers of $0$'s and $1$'s (with $a+b=n$). Expanded, this is $f(x)=\sum_{j=0}^b\binom{b}{j}x^{a+b-j}(-1)^j$. Modulo $2$, we get $$\sum_{i=0}^ne_i(a_1,\dots,a_n)x^{n-i}\equiv\sum_{j=0}^b\binom{b}{j}x^{n-j}\pmod{2}.$$ Matching up coefficients, $e_k(a_1,\dots,a_n)\equiv\binom{b}{k}\pmod{2}$. That is, $c_n(k)\equiv\binom{b}{k}\pmod{2}$ when $b$ is the number of variables set to $1$. (By the way, construct Pascal's triangle modulo $2$ if you haven't already. Do it out far enough until you recognize the shape.)
Lucas's theorem can be used to understand these binomial coefficients. Write $b=\sum_{i=0}^m b_i2^i$ and $k=\sum_{i=0}^m k_i2^i$, with $b_0,\dots,b_m,k_0,\dots,k_m\in\{0,1\}$. That is, as base-2 representations. Then $\binom{b}{k}\equiv\prod_{i=0}^m\binom{b_i}{k_i}\pmod{2}$, where recall $\binom{0}{1}=0$. Logically, with $p,q\in\{0,1\}$, $\binom{p}{q}$ is $q\to p$ ($q$ implies $p$) since if $q=0$ the coefficient is $1$, and if $q=1$, then the coefficient is $p$.
Let $j$ be another number and let $j_0,\dots,j_m$ be similar. Then, $$c_n(k)c_n(j)\equiv\binom{b}{k}\binom{b}{j}\equiv \prod_{i=0}^m\binom{b_i}{k_i}\binom{b_i}{j_i}$$ Recall that $(k_i\to b_i)\wedge(j_i\to b_i)$ is logically $(k_i\vee j_i)\to b_i$, so we have $$c_n(k)c_n(j)\equiv\prod_{i=0}^m\binom{b_i}{k_i\vee j_i}\equiv\binom{b}{k\vee j}$$ using your bitwise-OR notation.
This holds for all $b$. Thus, if $k\vee j\leq n$, $c_n(k)c_n(j)=c_n(k\vee j)$. Otherwise, if $k\vee j > n$, $c_n(k)c_n(j)=0$.
If you define $c_n(m)=0$ when $m>n$, then it is just $$c_n(k)c_n(j)=c_n(k\vee j).$$
There might be other interesting identities one can get from Newton's identities, but I couldn't find any. They involve $p_k(a_1,\dots,a_n)=a_1^k+\dots+a_n^k$, which is just $e_1(a_1,\dots,a_n)$ when mod $2$ and $k\geq 1$. So, the identity $$ke_k(a_1,\dots,a_n)=\sum_{i=1}^k(-1)^{i-1}e_{k-i}(a_1,\dots,a_n)p_i(a_1,\dots,a_n)$$ when reduced mod $2$ is $$ke_k(a_1,\dots,a_n)\equiv\sum_{i=1}^ke_{k-i}(a_1,\dots,a_n)e_1(a_1,\dots,a_n)\pmod{2}$$ or $$kc_n(k)\equiv c_n(1)\sum_{j=0}^{k-1}c_n(j)\pmod{2}.$$
For example, if $k=3$, we get $c_n(3)=c_n(1)(1+c_n(1)+c_n(2))$.
But, distributing the right hand side we get $c_n(1)+c_n(1)+c_n(1)c_n(2)=c_n(3)$, which is nothing new.