I'm getting my feet wet with Seifert Fibered Spaces in Hatcher's 3-manifold papers. Elsewhere, it is said that this follows easily from the definition. I am not seeing it. I think we would need to know that $T^2$ and $K^2$ are the only surfaces which have a foliation of circles.
2026-02-22 21:02:16.1771794136
Boundary of Seifert Fibered Space is a $T^2$ or $K^2$
63 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LOW-DIMENSIONAL-TOPOLOGY
- Getting a self-homeomorphism of the cylinder from a self-homeomorphism of the circle
- Does $S^2\times[-1,1]$ decompose as $B^3\#B^3$
- Homologically zero circles in smooth manifolds
- Can we really move disks around a compact surface like this?
- Why is this not a valid proof of the Poincare Conjecture?
- Regarding Surgery and Orientation
- Can a one-dimensional shape have volume?
- The inside of a closed compact surface $\sum_g$
- How do you prove that this set is open?
- Understanding cobordisms constructed from a Heegaard triple
Related Questions in MANIFOLDS-WITH-BOUNDARY
- Regular surfaces with boundary and $C^1$ domains
- "Defining a smooth structure on a topological manifold with boundary"
- Integration of one-form
- Showing that a diffeomorphism preserves the boundary
- Giving a counterexample for the extension lemma of smooth functions
- A question about the proof of Extension Lemma for Smooth functions
- Manifolds with boundary and foliations
- Pullbacks and differential forms, require deep explanation + algebra rules
- Possible to describe random 3D surfaces (geograhical height over limited area) by formula?
- Can you hear the pins fall from bowling game scores?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Both surfaces can be described foliating over a (the yellow) circle as a base (the Zerlegung) by circles (in reds and blues). In the picture
the "leaves" (in reds and blues) meet the base in yellow. The edges of the squares are identified regarding the specified letters and the directions of them the get $T$ and $K$ respectively.