If we let $N=S^2\times[-1,1]$ and let $S=S^2\times\lbrace 0\rbrace$, then cutting along $S$ we obtain what appears to me like two more copies of $N$: $S^2\times[-1,-\epsilon]$ and $S^2\times[\epsilon,1]$. Gluing $B^3$ to the boundary of these components corresponding to $S$ in $N$, we (I think) obtain two more balls. Am I doing something wrong here? This doesn't seem correct.
2026-02-22 19:50:47.1771789847
Does $S^2\times[-1,1]$ decompose as $B^3\#B^3$
67 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MANIFOLDS
- a problem related with path lifting property
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- Using the calculus of one forms prove this identity
- "Defining a smooth structure on a topological manifold with boundary"
- On the differentiable manifold definition given by Serge Lang
- Equivalence of different "balls" in Riemannian manifold.
- Hyperboloid is a manifold
- Integration of one-form
- The graph of a smooth map is a manifold
Related Questions in LOW-DIMENSIONAL-TOPOLOGY
- Getting a self-homeomorphism of the cylinder from a self-homeomorphism of the circle
- Does $S^2\times[-1,1]$ decompose as $B^3\#B^3$
- Homologically zero circles in smooth manifolds
- Can we really move disks around a compact surface like this?
- Why is this not a valid proof of the Poincare Conjecture?
- Can a one-dimensional shape have volume?
- The inside of a closed compact surface $\sum_g$
- How do you prove that this set is open?
- Understanding cobordisms constructed from a Heegaard triple
- Boundary of Seifert Fibered Space is a $T^2$ or $K^2$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
A trick is: you decompose $S^2$ as $S^2=D_1\cup D_2$ into 2-disks such that the borders of them are identinfied in “equator” $\partial=D_1\cap D_2$. Then do the cartesian product $$S^2\times I=(D_1\times I)\cup_{\partial\times I}(D_2\times I).$$ So, at the level $S^2\times\{0\}$ isotoping into one of the 3-balls $$B_1=D_1\times I\quad,\quad B_2=D_2\times I,$$ in the interior of each of them, is giving you a 3-ball whose border is the isotoped sphere and serves from the connected-sum $B_1\# B_2$ claimed.