Let $f_1, f_2, f_3\in C_0^\infty(\mathbb{R}^2)$, $\psi\in C_0^\infty(\mathbb{R})$, and $\psi_t(x)=t\psi(tx)$ for all $t>0$. Show that if $\tfrac{1}{p_1}+\tfrac{1}{p_2}+\tfrac{1}{p_3}=1$ for some $1\le p_1,p_2,p_3\le\infty$, then $$\left|\int_{\mathbb{R}^3}f_1(x,y)f_2(y,z)f_3(z,x)\psi_t(x+y+z)dxdydz\right|\le\lVert f_1\rVert_{L^{p_1}(\mathbb{R}^2)}\lVert f_2\rVert_{L^{p_2}(\mathbb{R}^2)}\lVert f_3\rVert_{L^{p_3}(\mathbb{R}^2)}\lVert\psi\rVert_{L^1(\mathbb{R})}$$ for all $t>0$.
See https://en.wikipedia.org/wiki/Bump_function and http://mathworld.wolfram.com/Lp-Space.html for notation explanation.
My first instinct is to use Holder's Inequality, but the pairings of the variables on the LHS and the additional $\psi$ terms make it difficult to apply. I don't have any other ideas.
For brevity, I will only consider the case of two variables below, and write $p,q$ instead of $p_1,p_2$. The three variable case is left as an exercise to the reader.
We have \begin{align*} &\left| \int f(x) g(y) \psi_t (x+y) d(x,y)\right| \\ &\leq \int |f(x)| |\psi_t(x+y)|^{1/p} |g(y)| |\psi_t (x+y)|^{1/q} d(x,y)\\ & \leq \left(\int |f(x)|^p |\psi_t (x+y)| d(x,y)\right)^{1/p} \left(\int |g(y)|^q |\psi_t (x+y)| d(x,y)\right)^{1/q}. \end{align*} Now, we use Fubini's theorem and the substitution $z=x+y$ to estimate the first integral. The second one is analogous. We have \begin{align*} &\int |f(x)|^p |\psi_t (x+y)| d(x,y)\\ &=\int |f(x)|^p \int |\psi_t (x+y)| dy dx\\ &= \int |f(x)|^p \int |\psi_t (z)| dz dx\\ &= \|f\|_{L^p}^p \|\psi_t\|_{L^1}. \end{align*} Finally note that $\|\psi_t\|_{L^1}=\|\psi\|_{L^1}$.