I have a simple and potentially stupid question but somehow I just can't get it. In Tom Apostol's Mathematical Analysis, Theorem 10.54 it says that if $f$, $g$ are square integrable then $f$ and $g$ are measurable. It looks plausible but may I know why? While $f^2$ and $g^2$ are Lebesgue-integrable and hence measurable, that I can understand, I don't see why it can be extended to $f$ and $g$ directly... Thanks! Bosco
2026-02-22 21:25:10.1771795510
Square Integrable Functions are Measurable?
422 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in LEBESGUE-INTEGRAL
- A sequence of absolutely continuous functions whose derivatives converge to $0$ a.e
- Square Integrable Functions are Measurable?
- Lebesgue measure and limit of the integral.
- Solving an integral by using the Dominated Convergence Theorem.
- Convergence of a seqence under the integral sign
- If $g \in L^1$ and $f_n \to f$ a.e. where $|f_n| \leq 1$, then $g*f_n \to g*f$ uniformly on each compact set.
- Integral with Dirac measure.
- If $u \in \mathscr{L}^1(\lambda^n), v\in \mathscr{L}^\infty (\lambda^n)$, then $u \star v$ is bounded and continuous.
- Proof that $x \mapsto \int |u(x+y)-u(y)|^p \lambda^n(dy)$ is continuous
- a) Compute $T(1_{[\alpha,\beta]})$ for all $0<\alpha <\beta<0$
Related Questions in MEASURABLE-FUNCTIONS
- Show if function is Lebesgue-measurable
- Discontinuous Brownian Motion
- showing that $f(x)=\mu(B(x,r))$ is measurable
- Question on Durett 5.1.11
- Can someone explain the indicator function to me?
- Why the characteristic function is measurable?
- Distance metric limits to 0 if and only if convergence in measure
- Characterizing the dual space of the linear space of the signed measures generated by a given set of measures.
- $f: [0,1]\rightarrow L^1(\Omega)$ as a (measurable?) function from $[0,1]\times \Omega\rightarrow \mathbb{R}$
- What can be said about the measure of the image of a subset of $\mathbb R^d$ of measure zero under a measurable function?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
As stated, it is false. If $V$ is non-measurable subset of $[0,1]$ and if $f\colon V\longrightarrow\mathbb R$ is the function defined by$$f(x)=\begin{cases}1&\text{ if }x\in V\\-1&\text{ otherwise,}\end{cases}$$then $f^2$ is Lebesgue-integrable, but $f$ is not measurable.