How to calculate $$\int\int_E e^{5x^2+2xy+y^2}dA,$$ where $E=\{(x,y)\mid 5x^2+2xy+y^2\leq 1\}$? I know I have to use the change-of-variable formula by first finding the change-of-variable function $\Psi$. However, what's the function should I use? And how to deal with the annoying $xy$-term?
2026-02-22 21:06:00.1771794360
Calculate $\int\int_E e^{5x^2+2xy+y^2}dA$
119 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in INTEGRATION
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- How to integrate $\int_{0}^{t}{\frac{\cos u}{\cosh^2 u}du}$?
- Show that $x\longmapsto \int_{\mathbb R^n}\frac{f(y)}{|x-y|^{n-\alpha }}dy$ is integrable.
- How to find the unit tangent vector of a curve in R^3
- multiplying the integrands in an inequality of integrals with same limits
- Closed form of integration
- Proving smoothness for a sequence of functions.
- Random variables in integrals, how to analyze?
- derive the expectation of exponential function $e^{-\left\Vert \mathbf{x} - V\mathbf{x}+\mathbf{a}\right\Vert^2}$ or its upper bound
- Which type of Riemann Sum is the most accurate?
Related Questions in CHANGE-OF-VARIABLE
- Evaluation of $I=\iint_R e^{-(x^2+y^2)} \,dx\,dy$ by change of variable
- Undo a change of variables
- Volume of revolution with coordinate transformation.
- $\int_0^1 \int_0^{1-y} \cos\Big( \frac{x-y}{x+y} \Big) \, dx dy$
- Does the following change of variable hold?
- Two variables with joint density: Change of variable technique using Jacobian for $U=\min(X,Y)$ and $V=\max(X,Y)$
- Calculate $\int\int_E e^{5x^2+2xy+y^2}dA$
- $X \sim R(0,1)$ and $Y \sim R(0,1)$ , where $X$ and $Y$ are independent.
- Given that $X,Y$ are independent $N(0,1)$ , show that $\frac{XY}{\sqrt{X^2+Y^2}},\frac{X^2-Y^2}{2\sqrt{X^2+Y^2}}$ are independent $N(0,\frac{1}{4})$
- What coordinates should I determine if I want to find the area of a surface determined by a double integral
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Assume that the quadratic form $q(x,y)=ax^2+2bxy+cy^2$, associated to the matrix $Q=\begin{pmatrix}a & b \\ b & c \end{pmatrix}$ is positive definite, i.e. $a>0$ and $ac>b^2$ (Sylvester's criterion). Let $$E_q=\{(x,y)\in\mathbb{R}^2: q(x,y)\leq 1\}.$$ By the spectral theorem, $$ \iint_{E_q}e^{q(x,y)}\,dx\,dy = \iint_{\lambda_1 x^2+\lambda_2 y^2\leq 1}e^{\lambda_1 x^2+\lambda_2 y^2}\,dx\,dy $$ where $\lambda_1,\lambda_2$ are the eigenvalues of $Q$. By straightforward substitutions, the RHS equals $$ \frac{1}{\sqrt{\lambda_1 \lambda_2}}\iint_{X^2+Y^2\leq 1}e^{X^2+Y^2}\,dX\,dY=\frac{1}{\sqrt{\det Q}}\int_{0}^{2\pi}\int_{0}^{1}\rho e^{\rho^2}\,d\rho\,d\theta=\color{red}{\frac{\pi}{\sqrt{ac-b^2}}}. $$ Can you see what happens by considering $a=5$ and $b=c=1$?