$$\begin{array}{ll} \text{maximize} & t\\ \text{subject to} & \mathbf{A} -t \mathbf{B} \succeq 0\end{array}$$
where $\mathbf{A}\succeq0$ and $\mathbf{B}\succeq0$. I want to ask one question. Can I get $t$ in closed form?
$$\begin{array}{ll} \text{maximize} & t\\ \text{subject to} & \mathbf{A} -t \mathbf{B} \succeq 0\end{array}$$
where $\mathbf{A}\succeq0$ and $\mathbf{B}\succeq0$. I want to ask one question. Can I get $t$ in closed form?
Copyright © 2021 JogjaFile Inc.
This is the smallest generalized eigenvalue of the pair $(A,B)$. In MATLAB, you would compute it as
min(eig(A,B))