Let a real (square) matrix $\mathbf A$ is Hurwitz (i.e., all the eigenvalues of $\mathbf A$ have negative real parts). And let $\mathbf P$ is a real symmetric positive definite matrix. What will be the condition(s) (if at all) for the product $\mathbf {PA}$ to be a skew-symmetric matrix?
2026-02-22 21:52:40.1771797160
Can the matrix product $PA$ be skew-symmetric with $P=P^T>0$ and $A$ Hurwitz?
309 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in MATRICES
- How to prove the following equality with matrix norm?
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Powers of a simple matrix and Catalan numbers
- Gradient of Cost Function To Find Matrix Factorization
- Particular commutator matrix is strictly lower triangular, or at least annihilates last base vector
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Form square matrix out of a non square matrix to calculate determinant
- Extending a linear action to monomials of higher degree
- Eiegenspectrum on subtracting a diagonal matrix
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
Related Questions in POSITIVE-DEFINITE
- Show that this matrix is positive definite
- A minimal eigenvalue inequality for Positive Definite Matrix
- Show that this function is concave?
- $A^2$ is a positive definite matrix.
- Condition for symmetric part of $A$ for $\|x(t)\|$ monotonically decreasing ($\dot{x} = Ax(t)$)
- The determinant of the sum of a positive definite matrix with a symmetric singular matrix
- Using complete the square to determine positive definite matrices
- How the principal submatrix of a PSD matrix could be positive definite?
- Aribtrary large ratio for eigenvalues of positive definite matrices
- Positive-definiteness of the Schur Complement
Related Questions in SKEW-SYMMETRIC-MATRICES
- Two skew symmetric matrices of same rank are congruent.
- Why are skew-symmetric matrices of interest?
- Skew-symmetric square root of symmetric matrix
- Adjoint of skew-symmetric matrix
- If A is a matrix such that $A^{2}+A+2I=O$ ,then $A$ can't be skew symmetric.
- What is the derivative of a skew symmetric matrix?
- Diagonalization of skew-symmetric matrix
- Matrix exponential of a skew-symmetric matrix without series expansion
- Can the matrix product $PA$ be skew-symmetric with $P=P^T>0$ and $A$ Hurwitz?
- Every skew-symmetric matrix has a non-negative determinant
Related Questions in HURWITZ-MATRICES
- Randomly generate Hurwitz matrices?
- Is this a Hurwitz matrix?
- Is there a homeomorphism between the sets of Schur stable and Hurwitz stable matrices in companion forms?
- Find diagonal matrix $D$ such that $A D$ is Hurwitz
- Check if block matrix is Hurwitz
- Design feedback control law to make the whole matrix Hurwitz
- How can I choose elements of a matrix to ensure it is a Hurwitz matrix?
- Does subtracting a positive semi-definite diagonal matrix from a Hurwitz matrix keep it Hurwitz?
- Convexity of the set of Hurwitz matrices
- Exponential of irreducible, aperiodic Hurwitz/Metzler matrix is irreducible or has no zero entries?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
There is no such pair $P,A$. We note the following: $$ (PA)^* = -PA \implies\\ A^*P = -PA \implies\\ P^{-1}A^*P = -A $$ So, in order for $PA$ to be skew-symmetric, $-A$ needs to be similar to $A^*$. This is impossible if $A$ is Hurwitz since the eigenvalues of $A^*$ have negative real parts whereas the eigenvalues of $-A$ have positive real parts.
In fact, the above precludes the existence of any satisfactory (invertible) symmetric/self-adjoint matrix $P$ given a Hurwitz $A$. A more sophisticated version precludes even singular, non-zero $P$ that are self-adjoint.