I understand that $ \begin{align} \oint_C (z-z_0)^n dz = \begin{cases} 2\pi i & \text{if } n = -1 \\ 0 & \text{otherwise} \end{cases} \end{align}$
And I understand that $ f^{(0)}(z)=\dfrac{1}{2\pi i}\oint_\gamma f(\xi)\frac{1}{\xi-z}d\xi$
Differentiating we get $ f'(z)=\dfrac{1}{2\pi i}\oint_\gamma f(\xi)\frac{1}{(\xi-z)^2}d\xi $
Clearly $n \neq -1$ So why is that last integral not zero?
Because of the presence of $f(\xi)$ there. You can't jump from$$\oint_C(\xi-z)^{-2}\,\mathrm d\xi=0\text{ to }\oint_Cf(\xi)(\xi-z)^{-2}\,\mathrm d\xi=0.$$