I have $\mathbb{C}P^1$ defined by equivalence classes $(z^{1} : z^{2})$ with respect to $(z^{1} : z^{2}) = (\lambda z^{1} : \lambda z^{2})$. Then $U_{k} = \{(z^{1} : z^{2}) | z^{k} \ne 0 \}$ for $k = 1 , 2$. Then I define $\phi_{k}: \mathbb{R}^2 \rightarrow U_{k}$ by $\phi_{1}(x_{(1)}, y_{(1)}) = (1 : x_{(1)} + i y_{(1)})$ and similarly $\phi_{2}(x_{(2)}, y_{(2)}) = (x_{(2)} + i y_{(2)} : 1)$ , but I have no idea how to calculate $\phi_{k} ^{-1}$ for $k = 1, 2$ and I feel like it's probably really obvious? (I know that there's an easier mapping from $\mathbb{C}$ to the projective space but I'm interested in this map in this instance.
2026-02-22 18:47:29.1771786049
Complex projective line 1
125 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in MANIFOLDS
- a problem related with path lifting property
- Levi-Civita-connection of an embedded submanifold is induced by the orthogonal projection of the Levi-Civita-connection of the original manifold
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- Using the calculus of one forms prove this identity
- "Defining a smooth structure on a topological manifold with boundary"
- On the differentiable manifold definition given by Serge Lang
- Equivalence of different "balls" in Riemannian manifold.
- Hyperboloid is a manifold
- Integration of one-form
- The graph of a smooth map is a manifold
Related Questions in INVERSE
- Inverse of a triangular-by-block $3 \times 3$ matrix
- Proving whether a matrix is invertible
- Proof verification : Assume $A$ is a $n×m$ matrix, and $B$ is $m×n$. Prove that $AB$, an $n×n$ matrix is not invertible, if $n>m$.
- Help with proof or counterexample: $A^3=0 \implies I_n+A$ is invertible
- Show that if $a_1,\ldots,a_n$ are elements of a group then $(a_1\cdots a_n)^{-1} =a_n^{-1} \cdots a_1^{-1}$
- Simplifying $\tan^{-1} {\cot(\frac{-1}4)}$
- Invertible matrix and inverse matrix
- show $f(x)=f^{-1}(x)=x-\ln(e^x-1)$
- Inverse matrix for $M_{kn}=\frac{i^{(k-n)}}{2^n}\sum_{j=0}^{n} (-1)^j \binom{n}{j}(n-2j)^k$
- What is the determinant modulo 2?
Related Questions in SMOOTH-MANIFOLDS
- Smooth Principal Bundle from continuous transition functions?
- Possible condition on locally Euclidean subsets of Euclidean space to be embedded submanifold
- "Defining a smooth structure on a topological manifold with boundary"
- Hyperboloid is a manifold
- The graph of a smooth map is a manifold
- An elementary proof that low rank maps cannot be open
- What does it mean by standard coordinates on $R^n$
- Partial Differential Equation using theory of manifolds
- Showing that a diffeomorphism preserves the boundary
- Some questions on the tangent bundle of manifolds
Related Questions in COMPLEX-GEOMETRY
- Numerable basis of holomporphic functions on a Torus
- Relation between Fubini-Study metric and curvature
- Hausdorff Distance Between Projective Varieties
- What can the disk conformally cover?
- Some questions on the tangent bundle of manifolds
- Inequivalent holomorphic atlases
- Reason for Graphing Complex Numbers
- Why is the quintic in $\mathbb{CP}^4$ simply connected?
- Kaehler Potential Convexity
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
Related Questions in PROJECTIVE-SPACE
- Visualization of Projective Space
- Poincarè duals in complex projective space and homotopy
- Hyperplane line bundle really defined by some hyperplane
- Hausdorff Distance Between Projective Varieties
- Understanding line bundles on $\mathbb{P}_k^1$ using transition functions
- Definitions of real projective spaces
- Doubts about computation of the homology of $\Bbb RP^2$ in Vick's *Homology Theory*
- Very ample line bundle on a projective curve
- Realize the locus of homogeneous polynomials of degree $d$ as a projective variety.
- If some four of given five distinct points in projective plane are collinear , then there are more than one conic passing through the five points
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
The mapping you describe is precisely the mapping $\mathbb{C}\rightarrow U_1, z\mapsto (1:z)$ resp. $\mathbb{C}\rightarrow U_2,z\mapsto (z:1)$ when identifying $\mathbb{C}\cong \mathbb{R}^2,z\mapsto (\mathrm{Re}(z),\mathrm{Im}(z))$. The inverse is pretty straightforward: Let $(z_1:z_2)\in U_1$, then $z_1\neq 0$, so $(z_1:z_2)=(1,\frac{z_2}{z_1})$ and we therefore define $\phi_1^{-1}: U_1\rightarrow \mathbb{C},(z_1:z_2)\mapsto \frac{z_2}{z_1}$. Clearly this is the inverse of $\phi_1$. The same works for $\phi_2$.