What is an example of a differential manifold which possesses two holomorphic atlases which are equivalent as differential atlases but inequivalent as holomorphic atlases? Moreover, for this example, are these nice properties distinguishing each atlas?
2026-02-22 17:12:58.1771780378
Inequivalent holomorphic atlases
61 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in DIFFERENTIAL-GEOMETRY
- Smooth Principal Bundle from continuous transition functions?
- Compute Thom and Euler class
- Holonomy bundle is a covering space
- Alternative definition for characteristic foliation of a surface
- Studying regular space curves when restricted to two differentiable functions
- What kind of curvature does a cylinder have?
- A new type of curvature multivector for surfaces?
- Regular surfaces with boundary and $C^1$ domains
- Show that two isometries induce the same linear mapping
- geodesic of infinite length without self-intersections
Related Questions in COMPLEX-GEOMETRY
- Numerable basis of holomporphic functions on a Torus
- Relation between Fubini-Study metric and curvature
- Hausdorff Distance Between Projective Varieties
- What can the disk conformally cover?
- Some questions on the tangent bundle of manifolds
- Inequivalent holomorphic atlases
- Reason for Graphing Complex Numbers
- Why is the quintic in $\mathbb{CP}^4$ simply connected?
- Kaehler Potential Convexity
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
Related Questions in DIFFERENTIAL-TOPOLOGY
- Getting a self-homeomorphism of the cylinder from a self-homeomorphism of the circle
- what is Sierpiński topology?
- Bott and Tu exercise 6.5 - Reducing the structure group of a vector bundle to $O(n)$
- The regularity of intersection of a minimal surface and a surface of positive mean curvature?
- What's the regularity of the level set of a ''semi-nondegenerate" smooth function on closed manifold?
- Help me to prove related path component and open ball
- Poincarè duals in complex projective space and homotopy
- Hyperboloid is a manifold
- The graph of a smooth map is a manifold
- Prove that the sets in $\mathbb{R}^n$ which are both open and closed are $\emptyset$ and $\mathbb{R}^n$
Related Questions in PROJECTIVE-GEOMETRY
- Show that the asymptotes of an hyperbola are its tangents at infinity points
- Determining the true shape of a section.
- Do projective transforms preserve circle centres?
- why images are related by an affine transformation in following specific case?(background in computer vision required)
- Calculating the polar of a given pole relative to a conic (with NO Calculus)
- Elliptic Curve and Differential Form Determine Weierstrass Equation
- Inequivalent holomorphic atlases
- Conic in projective plane isomorphic to projective line
- Noether normalization lemma
- Find the angles between the vectors to the nearest hundredth of a radian
Related Questions in KAHLER-MANIFOLDS
- Relation between Fubini-Study metric and curvature
- Inequivalent holomorphic atlases
- Equality of $C^\infty$-functions on a complex manifold
- A compact Kähler manifold X with $H^{1,1}(X; \mathbb Z)=0$ cannot be embedded in a projective space?
- Picard group of a Torus
- à la Shafarevich conjecture for the moduli space of Calabi-Yau manifolds
- Difference of cohomologous Kähler forms
- What are the challenges and the importance to build an explicit K3 metric?
- Relative Hitchin-Kobayashi correspondence and relative Hermitian Yang-Mills connections
- Moment maps unitary group acting on matrices
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
In dimensions smaller than 4, there is only one differential structure for each topological manifold. That was proved by Tibor Radó for dimension $1$ and $2$, and by Edwin E. Moise in dimension $3$.
Now take $T_g$, the connected sum of $g$ tori: this is a smooth topological surface of genus $g$, hence there is a unique smooth structure on it. By contrast, if $g \ge 2$ then the complex structures on $T_g$ (up to the action of homeomorphisms that are isotopic to the identity) form a space of real dimension $6g-6$, see Teichmuller theory.