I cannot figure out how to get around the zero numerator and denominator in order to compute the limit below:
$$\lim_{x \to 1}\frac{\left(x^\frac{1}{5}\right)-1}{ \left( x^\frac{1}{6}\right) -1}$$
I tried:
$$ \lim_{x \to 1} \frac{ (x^\frac{1}{5} - 1) (x^\frac{1}{6} + 1) }{ (x^\frac{1}{6} - 1) (x^\frac{1}{6} + 1) } $$
$$\lim_{x \to 1} \frac{ (x^\frac{1}{5} - 1) (x^\frac{1}{6} + 1) }{ (x^\frac{2}{6} - 1) } $$
By L'Hopital's rule:\begin{align}\lim_{x\to1}\frac{x^\frac15-1}{x^\frac16-1}&=\lim_{x\to1}\frac{\frac15x^{-\frac45}}{\frac16x^{-\frac56}}\\&=\frac65.\end{align}