let $a_n\geq0 $ be a sequence of the power series defined as : $f(x)=\sum_{n\geq0}{a_n}x^n$ which is convergent for all $x\in \mathbb{R}$, my question here is trivial , under the cited assumption :
Question: Is $\displaystyle \cos\left( \sum_{n\geq0}{a_n}x^n\right)$ convergent ?
The cosine function is continuous hence for all sequences $\left(u_n\right)_{n \in \mathbb{N}}$ such that $u_n \underset{n \rightarrow +\infty}{\rightarrow}u$, $$ \cos\left(u_n\right)\underset{n \rightarrow +\infty}{\rightarrow}\cos\left(u\right) $$ Then, for $x \in \mathbb{R}$ $$ \cos\left(\sum_{n=0}^{+\infty}a_nx^n\right)=\cos\left(f\left(x\right)\right) $$