I have been tried to find the general solution for the ODE above, but its recursion relation became so complex that I doesn't can construct its power series solution. Below is my attempt, assuming $y = \sum_{n = 0}^{\infty} a_n x^n$ is the solution.
\begin{equation*} y = \sum_{n = 0}^{\infty} a_n x^n; \quad y' = \sum_{n = 1}^{\infty} n a_n x^{n-1}; \quad y'' = \sum_{n = 2}^{\infty} n (n - 1) a_n x^{n - 2}. \end{equation*} \begin{equation*} \Rightarrow \sum_{n = 2}^{\infty} n (n - 1) a_n x^{n - 2} + \sum_{n = 1}^{\infty} n a_n x^{n-1} + x^2 \sum_{n = 0}^{\infty} a_n x^n = 0 \end{equation*} \begin{equation*} \sum_{n = 0}^{\infty} (n + 2) (n + 1) a_{n + 2} x^{n} + \sum_{n = 0}^{\infty} (n + 1) a_{n + 1} x^{n} + \sum_{n = 2}^{\infty} a_{n - 2} x^{n} = 0 \end{equation*} \begin{equation*} 2 \cdot 1 \cdot a_2 + 3 \cdot 2 a_3 \cdot x + \sum_{n = 2}^{\infty} (n + 2) (n + 1) a_{n + 2} x^{n} + 1 \cdot a_1 + 2 a_2 x + \sum_{n = 2}^{\infty} (n + 1) a_{n + 1} x^{n} + \sum_{n = 2}^{\infty} a_{n - 2} x^{n} = 0 \end{equation*} \begin{equation*} a_1 + 2 a_2 + x(2 a_2 + 3 \cdot 2 a_3) + \sum_{n = 2}^{\infty} [(n + 2) (n + 1) a_{n + 2} + (n + 1) a_{n + 1} + a_{n - 2}] x^n = 0 \end{equation*} And the recursion relation: \begin{equation*} \begin{split} & a_1 + 2 a_2 = 0 \Rightarrow a_1 = -2 a_2 \\ & 2 a_2 + 3 \cdot 2 a_3 = 0 \Rightarrow a_3 = - \frac{a_2}{3}\\ & a_{n + 2} = \frac{- (n + 1) a_{n + 1} - a_{n - 2}}{(n + 2) (n + 1)} = - \frac{(n + 1) a_{n + 1} + a_{n - 2}}{(n + 2) (n + 1)} \end{split} \end{equation*} Starting from here, I calculate the coefficients until $n = 7$( $a_9$ ) but its recognition is being difficult for me. The following coefficients are
$n = 2$: \begin{equation*} a_4 = \frac{- 3 a_3 - a_0}{4 \cdot 3} = \frac{a_2 - a_0}{4 \cdot 3} \end{equation*} $n = 3$: \begin{equation*} \begin{split} a_5 & = - \frac{4 a_4 + a_1}{5 \cdot 4} = - \frac{1}{5 \cdot 4} \bigg[4 \bigg( \frac{a_2 - a_0}{4 \cdot 3}\bigg) - 2 a_2\bigg] = - \frac{1}{5 \cdot 4 \cdot 3} \bigg[ a_2 - a_0 - 3 \cdot 2 a_2\bigg] \\ & = \frac{a_2 (3 \cdot 2 - 1) + a_0}{5 \cdot 4 \cdot 3} \end{split} \end{equation*} $n = 4$: \begin{equation*} \begin{split} a_6 & = - \frac{5 a_5 + a_2}{6 \cdot 5} = - \frac{1}{6 \cdot 5} \bigg[5 \bigg( \frac{a_2 (3 \cdot 2 - 1) + a_0}{5 \cdot 4 \cdot 3} \bigg) + a_2\bigg] = - \frac{a_2 (4 \cdot 3 + 3 \cdot 2 - 1) + a_0 }{6 \cdot 5 \cdot 4 \cdot 3} \end{split} \end{equation*} \begin{equation*} \vdots \end{equation*} $n = 7$: \begin{equation*} \begin{split} a_9 & = - \frac{8 a_8 + a_5}{9 \cdot 8} \\ & = - \frac{a_2 (7 \cdot 6 \cdot 3 \cdot 2 - 7 \cdot 6 + 6 \cdot 5 + 5 \cdot 4 + 4 \cdot 3 + 3 \cdot 2 - 1) + a_0 (1 - 6 \cdot 5 + 6 \cdot 7)}{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3} \end{split} \end{equation*} Note that in $n = 7$, the coefficient is similar, but it's getting different of the $n = 2, 3, 4$ because the factor of $a_0$ is growing since $n = 6$.
Thanks for your attention.
Since you have two arbitrary constants, let them to be $a_0$ and $a_1$. So, doing the same as you did $$a_2=-\frac {a_1}2\qquad a_3=\frac {a_1}6$$ and just continue with the recurrence relation you built $$a_{n+2}=- \frac{(n + 1)\, a_{n + 1} + a_{n - 2}}{(n + 2) (n + 1)}$$ which could "better" write $$a_n=-\frac{a_{n-1}} n-\frac{a_{n-4}}{n(n-1)}$$ Do not try to be more explicit. You would probably be wasting your time.