There is a Lemma in chapter 1 (section 1.11) of the textbook: Graduate text in mathematics, functional analysis, Conway which states:
If $f$ is analytic in a neighborhood of $\overline B(a;r)$, then
$$f(a) = \frac{1}{\pi r^2} \int \int_{B(a;r)} f, $$
where $\overline B(a;r) = \{z: |z-a| \leq r\}$.
For the proof it uses the mean value property as: if $0 < t \leq r$, $f(a) = \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(a+te^{i\theta}) d\theta. $
I am confused about mean value theorem here?
Let $c(\theta)=a+te^{i \theta}$ for $\theta \in [- \pi, \pi]$.
Then, by Cauchy:
$f(a)=\frac{1}{2 \pi i} \int_c \frac{f(w)}{w-a}dw$.
Now use the definition of the integral $ \int_c$ to get the desired formula.