Consider the p-adic field $ \ \mathbb{Q}_p \ $ . Define $ \operatorname{ord}_p(x) \ $ to be the $p$-adic valuation of $ \ x \ $ by $ \operatorname{ord}_p(x)=\max \{r : \ p^r \ \text{ divides } \ x \} \ $.
The inequality $$ 1 \leq p^{\operatorname{ord}_p(n)} \leq n $$ holds good for every $ \ n \ $.
My question is -
Does the inequality $ \ 1 \leq p^{\operatorname{ord}_p(\large n^3)} \leq n \ $ holds?
That is , we are replacing $ \ n^3 \ $ by $ \ n \ $.
Answer:
Let $\ \ n=p^r \cdot \frac{a}{b} , \ b \neq 0 , \ p \ \text{ does not divide}\ a,b \ $
Then
$ \operatorname{ord}_p(n)=r \ $
So,
$ n^3=(p^r \cdot \frac{a}{b}) (p^r \cdot \frac{a}{b} ) (p^r \cdot \frac{a}{b}) =p^{3r} \left( \frac{a}{b} \right)^3 \ $
Thus,
$ ord_p(n^3)=3r \ $
So we have,
$ 1 \leq p^{\operatorname{ord}_p(n)} \leq p^{\operatorname{ord}_p(n^3)} \leq n \ $
Am I right?
Please kindly check my work and correct it if necessary . Thanks.
Presumably, for the question at hand, $n$ is required to be a positive integer.
But even with that restriction, the inequality $p^{\text{ord}_p(n^3)}\le n$ is not always true.
For example, if $p$ is prime, and $n=p$, we get $$p^{\text{ord}_p(n^3)}=p^{\text{ord}_p(p^3)}=p^3 > p = n$$