I am reading the Wolfram page for 'convergents' (of continued fractions) and it states without proof the following inequality $$\frac{1}{(a_{n+1}+2)q_n^2}<|\alpha-\frac{p_n}{q_n}|<\frac{1}{a_{n+1}q_n^2}$$ Where $\alpha = [a_1, a_2, ...]$ as a continued fraction with convergents $\frac{p_n}{q_n}$. To obtain this, I presume they use the inequality $$\frac{1}{q_n q_{n+2}}<|\alpha-\frac{p_n}{q_n}|<\frac{1}{q_nq_{n+1}}$$ and then apply the relation $q_n = a_nq_{n-1}+q_{n-2}$. This gives the right hand inequality straight away. However I can't see how to derive the other inequality. In case you're wondering, I'm interested in this because I want to show that $$|\sqrt{2}-\frac{p}{q}|\ge\frac{1}{4q^2}$$ using the continued expansion for $\sqrt{2}$ so any hints for that would also be appreciated.
2026-02-22 21:50:35.1771797035
Continued fraction rate of convergence
515 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CONVERGENCE-DIVERGENCE
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- studying the convergence of a series:
- Convergence in measure preserves measurability
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
- Convergence radius of power series can be derived from root and ratio test.
- Does this sequence converge? And if so to what?
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
Related Questions in CONTINUED-FRACTIONS
- Formula for the simple reapeted infinitely continued fractions
- Infinite continued fractions and convergents
- Convergence of $\ln\frac{x}{\ln\frac{x}{\ln x...}}$
- Find $\frac{a}{b} \in \mathbb{Q}$ such that $ |\,\frac{a}{b} - \sqrt{2}|_3 < \epsilon $
- $\sqrt{\frac{\pi e}{2}}=\frac{1}{1+\mathrm{K}_{i=1}^{\infty}{\frac{i}{1}}}+\sum_{n=0}^{\infty}{\frac{1}{(2n+1)!!}}$ implies $\sqrt{\pi e/2}\notin Q$?
- is there an algorithm that generates the continued fraction of a product of convergent continued fractions?
- continued fraction of $\sqrt{41}$
- Continued fraction of binomial function $(1+z)^{1/4}$
- How does the convergence sector of a continued fraction depend on the order where it is truncated?
- The most complex formula for the golden ratio $\varphi$ that I have ever seen. How was it achieved?
Related Questions in DIOPHANTINE-APPROXIMATION
- Find $\frac{a}{b} \in \mathbb{Q}$ such that $ |\,\frac{a}{b} - \sqrt{2}|_3 < \epsilon $
- Real part of complex root of $X^5-X-k^5+k+1$ is $\frac{1}{23k}$ away from any integer ($k\geq 2$)
- Fractional part of rational powers
- Dirichlet's approximation theorem
- Can interesting bounds to Gauss circle problem be seen/come from counting points close to a line?
- Lagrange spectrum in diophantine approximation theory
- Diophantine condition of irrational numbers
- Continued fraction rate of convergence
- Determine all limits of subsequences of $|\lambda \alpha^n +\mu \bar{\alpha}^n|$ (assume $|\alpha|>1$)
- exponentiating the natural numbers
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
For the left hand inequality I think they use the following inequality: $$\left| \alpha- \frac{p_n}{q_n}\right| > \frac{1}{q_n(q_{n+1}+q_n)}$$ then: $$q_{n+1} = a_{n+1} q_n+q_{n-1} \leq (a_{n+1}+1) q_n$$ to obtain: $$q_n(q_n+1+q_n) \leq q_n((a_{n+1}+2)q_n)$$ which gives the inequality.