Sometime I read that Dedekind's axiom is a continuity axiom, and sometimes I read that it's a completeness axiom. Besides Dedekind's axiom is equivalent to other properties as I read here in The Main Theorems of Calculus. Are all theese called continuity properties or completness properties ? if there is a difference what is it ?
2026-02-22 20:13:22.1771791202
Continuity axioms and completness axioms for real numbers are the same things?
240 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in REAL-ANALYSIS
- how is my proof on equinumerous sets
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Optimization - If the sum of objective functions are similar, will sum of argmax's be similar
- On sufficient condition for pre-compactness "in measure"(i.e. in Young measure space)
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Is this relating to continuous functions conjecture correct?
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Absolutely continuous functions are dense in $L^1$
- A particular exercise on convergence of recursive sequence
Related Questions in REAL-NUMBERS
- How to prove $\frac 10 \notin \mathbb R $
- Possible Error in Dedekind Construction of Stillwell's Book
- Is the professor wrong? Simple ODE question
- Concept of bounded and well ordered sets
- Why do I need boundedness for a a closed subset of $\mathbb{R}$ to have a maximum?
- Prove using the completeness axiom?
- Does $\mathbb{R}$ have any axioms?
- slowest integrable sequence of function
- cluster points of sub-sequences of sequence $\frac{n}{e}-[\frac{n}{e}]$
- comparing sup and inf of two sets
Related Questions in AXIOMS
- Should axioms be seen as "building blocks of definitions"?
- Non-standard axioms + ZF and rest of math
- Does $\mathbb{R}$ have any axioms?
- Finite axiomatizability of theories in infinitary logic?
- Continuity axioms and completness axioms for real numbers are the same things?
- Why don't we have many non euclidean geometries out there?
- Why do we need the axiom of choice?
- What axioms Gödel is using, if any?
- Determine if U a subspace of $P_3$?
- Why such stark contrast between the approach to the continuum hypothesis in set theory and the approach to the parallel postulate in geometry?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
As far as continuity
There are certain gaps on the ordered set of rational numbers. Consider the quantity $\tau$ characterized by the property that its square is $2$. There does not exist such a rational number. But there are rational numbers which are less than $\tau$ and there are rational numbers which are greater than the same. The two sets partition the set the rational numbers. This is a Dedekind cut with $$A=\{r\mid r<\tau\}\ \text{ and } \ B=\{r\mid r>\tau \}.$$ We can identify all rational numbers with a Dedekind cut. But some (most) Dedekind cuts cannot be identified with rational numbers. There are holes on the rational line. In order to fill these wholes one can consider all the Dedekind cuts as numbers -- an extension to the set of rational numbers. This extension makes the rational line continuous : in some sense the holes of the rational numbers have been patched.
So, the rational numbers are not Dedekind complete because the set of Dedekind cuts, the set of reals, is larger than the set of rational numbers.
As far as completeness
But, is the set of real numbers Dedekind complete? Let's not call the set of Dedekind cuts of rational numbers reals, call them ratcuts and ask the question again: Is the set of ratcuts Dedekind complete? What does characterize the ratcuts? Ratcuts is an ordered field. Can we add further elements, by the Dedekind method, to the field of ratcuts in such a way that the result remains an ordered field? Consider, as an example, the ordered field called surreal numbers. This is an extension of the ratcuts!
Then what makes the real numbers Dedekind complete? Nothing but the axiom claiming that there are no more Dedekind cuts but those which are considered to be real numbers. Better said: we don't consider more Dedekind cuts but those given by the rational cuts.
Hey, then what is an axiom? Is an axiom not an obvious statement that we don't want to prove. As the example of the real numbers shows, axioms are not related to some "reality" in the mirror of which a statement is obvious. Axioms form the (Platonic) reality... Axioms lead, not follow.