As we know the Bernoulli numbers $B_n$ are a sequence of signed rational numbers that can be defined by the exponential generating function $$\frac{x}{e^x-1}=\sum^{\infty}_{n=0}\frac{B_n x^n}{n!}.$$ Now my question is here. Is this series convergent, for all $z\in \mathbb{C}$? $$\sum^{\infty}_{t=1}\sum_{k=0}^{\infty}\frac{(-1)^{k+t+1}}{(t+1)!} \frac{B_{2k}}{(2k)!(t+2k+1)}z^{t+1}$$
2026-02-22 23:28:43.1771802923
convergence of an iterated series which is had Bernoulli numbers
63 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in CALCULUS
- Equality of Mixed Partial Derivatives - Simple proof is Confusing
- How can I prove that $\int_0^{\frac{\pi}{2}}\frac{\ln(1+\cos(\alpha)\cos(x))}{\cos(x)}dx=\frac{1}{2}\left(\frac{\pi^2}{4}-\alpha^2\right)$?
- Proving the differentiability of the following function of two variables
- If $f ◦f$ is differentiable, then $f ◦f ◦f$ is differentiable
- Calculating the radius of convergence for $\sum _{n=1}^{\infty}\frac{\left(\sqrt{ n^2+n}-\sqrt{n^2+1}\right)^n}{n^2}z^n$
- Number of roots of the e
- What are the functions satisfying $f\left(2\sum_{i=0}^{\infty}\frac{a_i}{3^i}\right)=\sum_{i=0}^{\infty}\frac{a_i}{2^i}$
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- How to prove $\frac 10 \notin \mathbb R $
- Proving that: $||x|^{s/2}-|y|^{s/2}|\le 2|x-y|^{s/2}$
Related Questions in NUMBER-THEORY
- Maximum number of guaranteed coins to get in a "30 coins in 3 boxes" puzzle
- Interesting number theoretical game
- Show that $(x,y,z)$ is a primitive Pythagorean triple then either $x$ or $y$ is divisible by $3$.
- About polynomial value being perfect power.
- Name of Theorem for Coloring of $\{1, \dots, n\}$
- Reciprocal-totient function, in term of the totient function?
- What is the smallest integer $N>2$, such that $x^5+y^5 = N$ has a rational solution?
- Integer from base 10 to base 2
- How do I show that any natural number of this expression is a natural linear combination?
- Counting the number of solutions of the congruence $x^k\equiv h$ (mod q)
Related Questions in CONVERGENCE-DIVERGENCE
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- studying the convergence of a series:
- Convergence in measure preserves measurability
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
- Convergence radius of power series can be derived from root and ratio test.
- Does this sequence converge? And if so to what?
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
Related Questions in ANALYTIC-NUMBER-THEORY
- Justify an approximation of $\sum_{n=1}^\infty G_n/\binom{\frac{n}{2}+\frac{1}{2}}{\frac{n}{2}}$, where $G_n$ denotes the Gregory coefficients
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- question regarding nth prime related to Bertrands postulate.
- Alternating sequence of ascending power of 2
- Reference for proof of Landau's prime ideal theorem (English)
- Does converge $\sum_{n=2}^\infty\frac{1}{\varphi(p_n-2)-1+p_n}$, where $\varphi(n)$ is the Euler's totient function and $p_n$ the $n$th prime number?
- On the behaviour of $\frac{1}{N}\sum_{k=1}^N\frac{\pi(\varphi(k)+N)}{\varphi(\pi(k)+N)}$ as $N\to\infty$
- Analytic function to find k-almost primes from prime factorization
- Easy way to prove that the number of primes up to $n$ is $\Omega(n^{\epsilon})$
- Eisenstein Series, discriminant and cusp forms
Related Questions in BERNOULLI-NUMBERS
- Infinite sum containing the Bernoulli numbers $B_{2n}$
- Stirling's series for Log Gamma
- Sign convention for Bernoulli numbers
- First Order Differential Equations Applied Question
- Bernoulli numbers [A classical introduction to modern number theory]
- convergence of an iterated series which is had Bernoulli numbers
- Evaluate $\lim\limits_{n\to\infty}(f(n+1)-f(n))$ where $f(n)=|B_{2n}|^{1/2n}$
- Justify an approximation of $\sum_{n=1}^\infty|G_n|\log\left(\frac{n+1}{n}\right)$, where $G_n$ is the $n$th Gregory coefficient
- Show that $n+1$ is prime if (Denominator(Bernoulli Number($n$)))/($n+1$) is an integer
- Bounds for Periodic Bernoulli Polynomials via Fourier Series
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?