Expanding $\ln(1+\frac{(-1)^n}{n})$ into its Maclaurin series we get:
$\ln(1+\frac{(-1)^n}{n}) = \frac{(-1)^n}{n} - \frac{(-1)^2n}{2!n} + \frac{(-1)^3n}{3!n} + \cdots + R$ for some remainder R.
Letting $\beta_n = \frac{(-1)^n}{n}$ and taking $\lim_{n \to \infty} \frac{|\alpha_n - 0|}{|\beta_n|}$ we get $1.$
But I'm sure the rate of convergence is supposed to be $\frac{1}{n}$ not $\frac{(-1)^n}{n}$. Are they the same? If so, how can I show it?
Thanks!
$ln(1+x)=x-\frac {x^{2}} 2+o(x^{2})$ so $\alpha_n =\frac {(-1)^{n}} n -\frac 1 {2n^2} +o(n^{-2})$. This means $\alpha_n - \frac {(-1)^{n}} n$ tends to $0$ at the rate of $\frac 1 {n^{2}}$.