I have this parametric equations: $$ x=\frac{a^2-2}{a^2+1} $$ $$ y=\frac{-3a}{a^2+1} $$ for $a\in(-\infty,\infty)$ They describe a circle with center at $(-\frac{1}{2},0)$ and radius $\frac{3}{2}$. Is there any way to convert them into one cartesian equation?
2026-02-22 19:45:37.1771789537
Converting circle parametric equation
89 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
3
WLOG $a=\tan t$
$\implies y=-\dfrac{3\sin2t}2$ or $\dfrac{2a}{1+a^2}=-\dfrac{2y}3$
and $x=\dfrac{a^2-2}{a^2+1}\iff a^2=\dfrac{2+x}{1-x}$
$$\iff\cos2t=\dfrac{1-a^2}{1+a^2}=\dfrac{1-x-(2+x)}{1-x+2+x}=-\dfrac{3+2x}3$$
Use $$\sin^22t+\cos^22t=1$$
or without Trigonometry,
$$\left(\dfrac{2a}{1+a^2}\right)^2+\left(\dfrac{1-a^2}{1+a^2}\right)^2=1$$