It is well known that an arbitrary rank 2 tensor (excuse me for my sloppy language) decomposes into a symmetric and anti-symmetric component: $$T_{ab}=T_{(ab)}+T_{[ab]}.$$ Is there a similar result for a rank 3 tensor? How about a tensor of arbitrary rank? I can see that, for example, $T_{abc}=T_{a(bc)}+T_{a[bc]}$. But I am looking for a decomposition which mixes all indices. It may look something like this $$T_{abc}=T_{(abc)}+T_{[abc]}+T_{[a|b|c]}+T_{(a|b|c)}+T_{a(bc)}+T_{a[bc]}\cdots .$$ I am more interested in the general case, but the rank 3 case provides a nice playground.
2026-02-22 19:30:02.1771788602
Decomposing an arbitrary rank tensor into components with symmetries
809 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in LINEAR-ALGEBRA
- An underdetermined system derived for rotated coordinate system
- How to prove the following equality with matrix norm?
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Why the derivative of $T(\gamma(s))$ is $T$ if this composition is not a linear transformation?
- Why is necessary ask $F$ to be infinite in order to obtain: $ f(v)=0$ for all $ f\in V^* \implies v=0 $
- I don't understand this $\left(\left[T\right]^B_C\right)^{-1}=\left[T^{-1}\right]^C_B$
- Summation in subsets
- $C=AB-BA$. If $CA=AC$, then $C$ is not invertible.
- Basis of span in $R^4$
- Prove if A is regular skew symmetric, I+A is regular (with obstacles)
Related Questions in TENSORS
- Linear algebra - Property of an exterior form
- How to show that extension of linear connection commutes with contraction.
- tensor differential equation
- Decomposing an arbitrary rank tensor into components with symmetries
- What is this notation?
- Confusion about vector tensor dot product
- Generalization of chain rule to tensors
- Tensor rank as a first order formula
- $n$-dimensional quadratic equation $(Ax)x + Bx + c = 0$
- What's the best syntax for defining a matrix/tensor via its indices?
Related Questions in SYMMETRY
- Do projective transforms preserve circle centres?
- A closed manifold of negative Ricci curvature has no conformal vector fields
- Show, by means of an example, that the group of symmetries of a subset X of a Euclidean space is, in general, smaller than Sym(x).
- How many solutions are there if you draw 14 Crosses in a 6x6 Grid?
- Symmetry of the tetrahedron as a subgroup of the cube
- Number of unique integer coordinate points in an $n$- dimensional hyperbolic-edged tetrahedron
- The stretch factors of $A^T A$ are the eigenvalues of $A^T A$
- The square root of a positive semidefinite matrix
- Every conformal vector field on $\mathbb{R}^n$ is homothetic?
- How to bound the dimension of the conformal algebra of a manifold?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, but it's complicated. A rank $3$ tensor has a symmetric part, an antisymmetric part, and a third part which is harder to explain (but which you can compute by subtracting off the symmetric and antisymmetric parts).
In general a rank $n$ tensor decomposes according to the irreducible representations of the symmetric group $S_n$, by Schur-Weyl duality. There are $p(n)$ of these where $p(n)$ is the partition function, so a rank $4$ tensor decomposes into $5$ parts, a rank $5$ tensor decomposes into $7$ parts, etc.