I have a differential equation with a simple tensor. The differential equation is $dy/dt = A^{-1}*D*y-y^{T}*T_{D}*A^{-1}*W*y$ where A, D, W are all matrices with A and D being diagonal matrices and $T_{D}$ is the 3-tensor that maps the vector y to a diagonal matrix (yes I could simplify the expression but these matrices have structural interpretations). With a scalar this boils down to a Bernoulli differential equation, however, I'm wondering how things change with matrices and tensors especially. A solution with steps would be helpful. Thanks!
2026-02-22 19:26:19.1771788379
tensor differential equation
252 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail AtRelated Questions in ORDINARY-DIFFERENTIAL-EQUATIONS
- The Runge-Kutta method for a system of equations
- Analytical solution of a nonlinear ordinary differential equation
- Stability of system of ordinary nonlinear differential equations
- Maximal interval of existence of the IVP
- Power series solution of $y''+e^xy' - y=0$
- Change of variables in a differential equation
- Dimension of solution space of homogeneous differential equation, proof
- Solve the initial value problem $x^2y'+y(x-y)=0$
- Stability of system of parameters $\kappa, \lambda$ when there is a zero eigenvalue
- Derive an equation with Faraday's law
Related Questions in MATRIX-EQUATIONS
- Can it be proved that non-symmetric matrix $A$ will always have real eigen values?.
- Real eigenvalues of a non-symmetric matrix $A$ ?.
- How to differentiate sum of matrix multiplication?
- Do all 2-variable polynomials split into linear factors over the space of $2 \times 2$ complex matrices?
- Big picture discussion for iterative linear solvers?
- Matrix transformations, Eigenvectors and Eigenvalues
- Jordan chevaley decomposition and cyclic vectors
- If $A$ is a $5×4$ matrix and $B$ is a $4×5$ matrix
- Simplify $x^TA(AA^T+I)^{-1}A^Tx$
- Necessary condition for a matrix equation to be zero
Related Questions in TENSORS
- Linear algebra - Property of an exterior form
- How to show that extension of linear connection commutes with contraction.
- tensor differential equation
- Decomposing an arbitrary rank tensor into components with symmetries
- What is this notation?
- Confusion about vector tensor dot product
- Generalization of chain rule to tensors
- Tensor rank as a first order formula
- $n$-dimensional quadratic equation $(Ax)x + Bx + c = 0$
- What's the best syntax for defining a matrix/tensor via its indices?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?