By using the binomial theorem for any $n\in\Bbb N$ $$(2+\sqrt3)^n=2^n+{n\choose1}2^{n-1}\sqrt3+{n\choose2}2^{n-2}3+{n\choose3}2^{n-3}3^{3/2}+...+{n\choose{n-1}}2\cdot3^{{n-1}\over2}+3^{n/2}\notin\Bbb Q$$
So the degree in infinite, is that correct?
By using the binomial theorem for any $n\in\Bbb N$ $$(2+\sqrt3)^n=2^n+{n\choose1}2^{n-1}\sqrt3+{n\choose2}2^{n-2}3+{n\choose3}2^{n-3}3^{3/2}+...+{n\choose{n-1}}2\cdot3^{{n-1}\over2}+3^{n/2}\notin\Bbb Q$$
So the degree in infinite, is that correct?
$P(x)=(X-2)^2-3$ is the minimal polynomial so the degree is $2$.