In other words, there can not be two different polynomials with integer coefficients that evaluate to the same real number when $x=e$.
2026-02-22 21:27:56.1771795676
Is it true that evaluating a polynomial with integer coefficients at $e$, uniquely defines it?
109 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in POLYNOMIALS
- Alternate basis for a subspace of $\mathcal P_3(\mathbb R)$?
- Integral Domain and Degree of Polynomials in $R[X]$
- Can $P^3 - Q^2$ have degree 1?
- System of equations with different exponents
- Can we find integers $x$ and $y$ such that $f,g,h$ are strictely positive integers
- Dividing a polynomial
- polynomial remainder theorem proof, is it legit?
- Polyomial function over ring GF(3)
- If $P$ is a prime ideal of $R[x;\delta]$ such as $P\cap R=\{0\}$, is $P(Q[x;\delta])$ also prime?
- $x^{2}(x−1)^{2}(x^2+1)+y^2$ is irreducible over $\mathbb{C}[x,y].$
Related Questions in TRANSCENDENTAL-NUMBERS
- Two minor questions about a transcendental number over $\Bbb Q$
- Is it possible to express $\pi$ as $a^b$ for $a$ and $b$ non-transcendental numbers?
- Is it true that evaluating a polynomial with integer coefficients at $e$, uniquely defines it?
- Is $\frac{5\pi}{6}$ a transcendental or an algebraic number?
- Is there any intermediate fields between these two fields?
- Is there any pair of positive integers $ (x,n)$ for which :$e^{{e}^{{e}^{\cdots x}}}=2^{n}$?
- Why is :$\displaystyle {e}^\sqrt{2}$ is known to be transcedental number but ${\sqrt{2}}^ {e}$ is not known?
- Irrationality of $\int_{-a}^ax^nn^xd x$
- Proving that $ 7<\frac{5\phi e}{\pi}< 7.0000689$ where $\phi$ is the Golden Ratio
- Transcendence of algebraic numbers with Transcendental power
Related Questions in ALGEBRAIC-NUMBERS
- Extension of field, $\Bbb{R}(i \pi) = \Bbb{C} $
- Polynomial root of algebraic number
- If $\mathcal{O}_{\Bbb{Q}(\sqrt{d})}$ has class number $2$ or higher, does that mean $\sqrt{d}$ is irreducible but not prime?
- Is $5^{1/5} - 3\cdot i$ algebraic?
- Super Algebraic Numbers?
- The maximal real algebraic field
- One of the conjugates of an algebraic integer must have absolute value $\geq$ 1
- To find the minimal polynomial and to show that (1-i) is an associate of (1+i) in given set
- proof verification $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ is an algebraic integer
- $\sin(2\pi q)$ is algebraic over $\mathbb{Q}$
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Yes, because $e$ is not algebraic number.
See here: https://en.wikipedia.org/wiki/Transcendental_number