I've distilled this down to just the most necessary details in order to avoid cluttering this question. Let $\Gamma$ be some lattice in $\mathbb{C}$. Let, say, $V$ denote the space of meromorphic functions on the torus $\mathbb{C}/\Gamma$ with exactly one (possibly removable) singularity at a certain fixed point $x \in V$ such that, if $f \in V$ then the order of its pole (if there is one) at $x$ is at most $n$. Then apparently the dimension of this space is $n$. I really don't see how - apparently one would have to use the Weierstrass $\wp$-function to understand that....could anybody please provide a bit of guidance?
2026-02-22 21:51:44.1771797104
Dimension of space of meromorphic functions on torus with only one pole
1k Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in COMPLEX-ANALYSIS
- Minkowski functional of balanced domain with smooth boundary
- limit points at infinity
- conformal mapping and rational function
- orientation of circle in complex plane
- If $u+v = \frac{2 \sin 2x}{e^{2y}+e^{-2y}-2 \cos 2x}$ then find corresponding analytical function $f(z)=u+iv$
- Is there a trigonometric identity that implies the Riemann Hypothesis?
- order of zero of modular form from it's expansion at infinity
- How to get to $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz =n_0-n_p$ from Cauchy's residue theorem?
- If $g(z)$ is analytic function, and $g(z)=O(|z|)$ and g(z) is never zero then show that g(z) is constant.
- Radius of convergence of Taylor series of a function of real variable
Related Questions in ALGEBRAIC-GEOMETRY
- How to see line bundle on $\mathbb P^1$ intuitively?
- Jacobson radical = nilradical iff every open set of $\text{Spec}A$ contains a closed point.
- Is $ X \to \mathrm{CH}^i (X) $ covariant or contravariant?
- An irreducible $k$-scheme of finite type is "geometrically equidimensional".
- Global section of line bundle of degree 0
- Is there a variant of the implicit function theorem covering a branch of a curve around a singular point?
- Singular points of a curve
- Find Canonical equation of a Hyperbola
- Picard group of a fibration
- Finding a quartic with some prescribed multiplicities
Related Questions in COMPLEX-GEOMETRY
- Numerable basis of holomporphic functions on a Torus
- Relation between Fubini-Study metric and curvature
- Hausdorff Distance Between Projective Varieties
- What can the disk conformally cover?
- Some questions on the tangent bundle of manifolds
- Inequivalent holomorphic atlases
- Reason for Graphing Complex Numbers
- Why is the quintic in $\mathbb{CP}^4$ simply connected?
- Kaehler Potential Convexity
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
Related Questions in RIEMANN-SURFACES
- Composing with a biholomorphic function does not affect the order of pole
- open-source illustrations of Riemann surfaces
- I want the pullback of a non-closed 1-form to be closed. Is that possible?
- Reference request for Riemann Roch Theorem
- Biholomorphic Riemann Surfaces can have different differential structure?
- Monodromy representations and geodesics of singular flat metrics on $\mathbb{H}$
- How to choose a branch when there are multiple branch points?
- Questions from Forster's proof regarding unbranched holomorphic proper covering map
- Is the monodromy action of the universal covering of a Riemann surface faithful?
- Riemann sheets for combined roots
Related Questions in ELLIPTIC-FUNCTIONS
- How to convert $\frac{1}{2\pi}\int_{0}^{2\pi}\sqrt{(ucos(\theta)+v\sin(\theta))^2-(u^2+v^2-1)} d\theta$ to an elliptic integral?
- Finding zeros of the elliptic function $f(z) = \sum_{\omega \in \Omega} \frac{1}{(z - \omega)^3}$
- Calculating derivatives of the Weierstrass $\wp$-function in terms of $\wp$ and $\wp '$
- Dimension of space of meromorphic functions on torus with only one pole
- Extension of a conformal mapping to an elliptic function
- Can a polynomial be expressed as a rational function in Weierstrass functions?
- Integer solutions of $ax^3 + bx^2 + cx - y^2 = k$
- Meromorphic Functions that satisfy a first order algebraic differential equation
- Do we have a conformal mapping from the regular pentagon to the disk?
- Jacobi form to Weierstrass form . . . lattices included .... polynomial factoring in the way
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Without loss of generality assume that the pole is at $z=0$. A function $f \in V$ has a Laurent-series $$ f(z) = \sum_{j=-n}^\infty a_n z^n $$ at $z=0$.
Now consider the Weierstrass $\wp$ function for the same lattice, and its derivatives $\wp', \ldots, \wp^{(n-2)}$. $\wp, \wp', \ldots, \wp^{(n-2)}$ have poles at $z=0$ of order $2, 3, \ldots, n$, respectively. It follows that for suitable constants $c_0, \ldots, c_{n-2}$, $$ g(z) = f(z) - c_0 \wp - c_1 \wp' - \ldots - c_{n-2} \wp^{(n-2)} $$ has at most a simple pole at $z=0$ (and no other poles in the fundamental parallelogram).
And since the sum of all residues of an elliptic function in the fundamental parallelogram is always zero, $g$ has no pole at all and therefore is constant.
It follows that functions in $V$ are exactly the linear combinations $$ c + c_0 \wp + c_1 \wp' + \ldots + c_{n-2} \wp^{(n-2)} $$ with $c, c_0, \ldots, c_{n-2} \in \Bbb C$.