The Wikipedia article on Approximation says that "An approximation is anything that is similar but not exactly equal to something else." Is excluding exact equality (i.e. $x = y \implies x \not\approx y$) standard when using the terminology "approximate"? For what it's worth, the ISO 80000-2 standard specifies that "Equality is not excluded" for the symbol U+2248 “≈”. I recently came across a use of the word "approximation" in a context that greatly confused me until I realized that they were implicitly excluding the case of equality, which was crucial for making their claim correct.
2026-02-22 17:31:39.1771781499
Does approximation usually exclude equality?
76 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in SOFT-QUESTION
- Reciprocal-totient function, in term of the totient function?
- Ordinals and cardinals in ETCS set axiomatic
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Online resources for networking and creating new mathematical collaborations
- Random variables in integrals, how to analyze?
- Could anyone give an **example** that a problem that can be solved by creating a new group?
- How do you prevent being lead astray when you're working on a problem that takes months/years?
- Is it impossible to grasp Multivariable Calculus with poor prerequisite from Single variable calculus?
- A definite integral of a rational function: How can this be transformed from trivial to obvious by a change in viewpoint?
- Did Grothendieck acknowledge his collaborators' intellectual contributions?
Related Questions in NOTATION
- Symbol for assignment of a truth-value?
- Does approximation usually exclude equality?
- Is division inherently the last operation when using fraction notation or is the order of operation always PEMDAS?
- strange partial integration
- What does Kx mean in this equation? [in Carnap or Russell and Whitehead's logical notation]
- Need help with notation. Is this lower dot an operation?
- What does this "\" mathematics symbol mean?
- Why a set or vector start counting from a negative or zero index?
- How to express a sentence having two for all?
- How to say that there may exist elements in two sets such that their intersection is not null?
Related Questions in TERMINOLOGY
- The equivalent of 'quantum numbers' for a mathematical problem
- Forgot the name of a common theorem in calculus
- Name of some projection of sphere onto $\mathbb{R}^2$
- What is $x=5$ called??
- Is there a name for this operation? $f(a, b) = a + (1 - a)b$
- When people say "an algebra" do they always mean "an algebra over a field"?
- What is the term for "in one $n$-space"?
- The product of disjoint cycles
- What about the 'geometry' in 'geometric progression'?
- Is there an "inverted" dot product?
Related Questions in APPROXIMATION
- Approximate spline equation with Wolfram Mathematica
- Solving Equation with Euler's Number
- Approximate derivative in midpoint rule error with notation of Big O
- An inequality involving $\int_0^{\frac{\pi}{2}}\sqrt{\sin x}\:dx $
- On the rate of convergence of the central limit theorem
- Is there any exponential function that can approximate $\frac{1}{x}$?
- Gamma distribution to normal approximation
- Product and Quotient Rule proof using linearisation
- Best approximation of a function out of a closed subset
- Approximate x+1 without addition and logarithms
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
I don't think it matters all that much. I would use "approximation" in a situation where I could prove that something is close to another thing but I'm not bothering to check either way whether they are exactly equal. It may be that I end up approximating a function $f(x)$ by another function $g(x)$ which happens to be equal to $f$ for some values of $x$, but that wouldn't disqualify $g(x)$ from being an approximation. I would be very surprised if they were always equal, since generally I pick $g(x)$ deliberately to be much simpler than $f(x)$, so I would expect that to basically never happen anyway, e.g. for Stirling's approximation.
As another example, I would use the phrase "Taylor approximation" to describe approximating a function near a point by truncating its Taylor series near that point even if the function is a polynomial, so that the approximation is exact at some point. I don't think this sort of usage is particularly uncommon either; google the phrase "approximation is exact" for more examples in this vein.
If you have a question about a particular case you should just ask about that.