Points lying in a common line are called colinear. Points lying in common plane are called coplanar. Points lying in a common (3-dimensional) space are called cospatial. But how would you call points lying in a common $n$-dimensional space? Can you just call them "co-$n$-spatial"?
2026-02-22 18:53:49.1771786429
What is the term for "in one $n$-space"?
71 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in GEOMETRY
- Point in, on or out of a circle
- Find all the triangles $ABC$ for which the perpendicular line to AB halves a line segment
- How to see line bundle on $\mathbb P^1$ intuitively?
- An underdetermined system derived for rotated coordinate system
- Asymptotes of hyperbola
- Finding the range of product of two distances.
- Constrain coordinates of a point into a circle
- Position of point with respect to hyperbola
- Length of Shadow from a lamp?
- Show that the asymptotes of an hyperbola are its tangents at infinity points
Related Questions in TERMINOLOGY
- The equivalent of 'quantum numbers' for a mathematical problem
- Does approximation usually exclude equality?
- Forgot the name of a common theorem in calculus
- Name of some projection of sphere onto $\mathbb{R}^2$
- What is $x=5$ called??
- Is there a name for this operation? $f(a, b) = a + (1 - a)b$
- When people say "an algebra" do they always mean "an algebra over a field"?
- What is the term for "in one $n$-space"?
- The product of disjoint cycles
- What about the 'geometry' in 'geometric progression'?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Is really that meaning of cospatial generally agreed on? I don't think so. And I don't think there's a generally agreed on term for generalizations of the concept.
However some constructs would indicate the meaning of words from it's parts. So co-linear indicates they are on the same line, co-planar indicates that they are on the same plane.
Generalizing this construct co-spatial would mean they are in the same space (but remember that space is often used in a more general sense than just 3-dimensional Euclidean spaces).
On the other hand if we want to be more specific we can be more specific and say 3-space or if it's a subspace talk about 3-subspace. The term that conveys that would be co-3-spatial or co-3-subspatial. The special case where the subspace is one dimension less than the containing space it would be co-hyperplanar.
However as these are not generally agreed on terms you should probably define them somewhere, at least unless they are uniquely defined by the context. Choosing a good name is useful however as it would be easier to remember what it is.