If all shaded blocks are squares derived from the largest one with edge length 1, does the area converge?
2026-02-22 21:04:20.1771794260
does the area converge?
480 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in CONVERGENCE-DIVERGENCE
- Finding radius of convergence $\sum _{n=0}^{}(2+(-1)^n)^nz^n$
- Conditions for the convergence of :$\cos\left( \sum_{n\geq0}{a_n}x^n\right)$
- Proving whether function-series $f_n(x) = \frac{(-1)^nx}n$
- Pointwise and uniform convergence of function series $f_n = x^n$
- studying the convergence of a series:
- Convergence in measure preserves measurability
- If $a_{1}>2$and $a_{n+1}=a_{n}^{2}-2$ then Find $\sum_{n=1}^{\infty}$ $\frac{1}{a_{1}a_{2}......a_{n}}$
- Convergence radius of power series can be derived from root and ratio test.
- Does this sequence converge? And if so to what?
- Seeking an example of Schwartz function $f$ such that $ \int_{\bf R}\left|\frac{f(x-y)}{y}\right|\ dy=\infty$
Related Questions in FRACTALS
- does the area converge?
- "Mandelbrot sets" for different polynomials
- Is the Mandelbrot set path-connected?
- Does the boundary of the Mandelbrot set $M$ have empty interior?
- What sort of function is this? (Logistic map?)
- effective degree for normalized escape-time of hybrids
- Julia set of $x_n = \frac{ x_{n-1}^2 - 1}{n}$
- A closed form for the sum $\sum_{s=0}^{n-1} e^{\frac{s(s+1)}{2}i\theta}$?
- Given a real number $d , (1<d<2)$, is there a fractal with fractal dimension $d$?
- How can one write a line element for non-integer dimensions?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?

The horizontal distance from the midpoint of the largest square to the leftmost point can be computed as $$\frac12+\frac12+\left(\frac{1}{\sqrt2}\right)^2+\left(\frac{1}{\sqrt2}\right)^2+\left(\frac{1}{\sqrt2}\right)^4+\left(\frac{1}{\sqrt2}\right)^4+\cdots\\=1+2\left(\frac12+\frac14+\frac18+\cdots\right)=3$$ So the total width of the system is $6$. The total height is $$1+1+\left(\frac{1}{\sqrt2}\right)^2+\left(\frac{1}{\sqrt2}\right)^2+\left(\frac{1}{\sqrt2}\right)^4+\left(\frac{1}{\sqrt2}\right)^4+\cdots=4$$ So, as the wiki article says, it is bounded in a $6\times 4$ box, and so is finite in area.