$''$ Prove that the following integral operator
$ Ku(x) = \int_{0}^{ \infty } \ e ^{-xy} u(y) dy $
has as eigenfunction the
$ φ_α(x) = \sqrt {Γ(α)} x^{-α} + \sqrt {Γ(1-α)} x^{α-1} $
for $ α\in (0,1) $ and $Γ$ the gamma function. $''$
I replaced $u(x)$ with $φ_α(x)$ so
$ Kφ_α(x) = \int_{0}^{ \infty } \ e ^{-xy} ( \sqrt {Γ(α)} y^{-α} + \sqrt {Γ(1-α)} y^{α-1} ) dy $
and after some calculations I concluded to this:
$ Kφ_α(x) = \sqrt {Γ(α){Γ^{2}(1-α)}} x^{α-1} + \sqrt {Γ(α){Γ^{2}(1-α)}} x^{-α}$ =
$ \sqrt {Γ(α)Γ(1-α)} \sqrt {Γ(1-α)} x^{α-1} + \sqrt {Γ(α)Γ(1-α)}\sqrt {Γ(α)} x^{-α} $=
$ \sqrt {Γ(α)Γ(1-α)} (\sqrt {Γ(1-α)} x^{α-1} +\sqrt {Γ(α)} x^{-α} ) $
My questions are :
Is the above calculation enough in order to say someone that the eigenvalue of $K$ operator is the $\sqrt {Γ(α)Γ(1-α)} $ which is equal to $ \sqrt {\frac {π}{\sin πα}} $ and so the eigenfunction is $φ_α(x)$ ?
If the above isn't enough, how can i prove this?