The even dimensional spheres are homogeneous spaces of the form $S^{2n} = SO(2n+1)/SO(2n)$. What is the inclusions of Lie algebras $\frak{so}(2n) \hookrightarrow \frak{so}(2n+1)$ dual to the inclusion of groups $SO(2n) \hookrightarrow SO(2n+1)$. That is to say, where does the inclusion send the basis elements $E_i,F_i,K_i \in \frak{so}(2n)$, for $i =1,2$.
2026-02-22 18:51:15.1771786275
Even Dimensional Spheres and Lie Algebra Inclusions
83 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in DIFFERENTIAL-GEOMETRY
- Smooth Principal Bundle from continuous transition functions?
- Compute Thom and Euler class
- Holonomy bundle is a covering space
- Alternative definition for characteristic foliation of a surface
- Studying regular space curves when restricted to two differentiable functions
- What kind of curvature does a cylinder have?
- A new type of curvature multivector for surfaces?
- Regular surfaces with boundary and $C^1$ domains
- Show that two isometries induce the same linear mapping
- geodesic of infinite length without self-intersections
Related Questions in LIE-GROUPS
- Holonomy bundle is a covering space
- homomorphism between unitary groups
- On uniparametric subgroups of a Lie group
- Is it true that if a Lie group act trivially on an open subset of a manifold the action of the group is trivial (on the whole manifold)?
- Find non-zero real numbers $a,b,c,d$ such that $a^2+c^2=b^2+d^2$ and $ab+cd=0$.
- $SU(2)$ adjoint and fundamental transformations
- A finite group G acts freely on a simply connected manifold M
- $SU(3)$ irreps decomposition in subgroup irreps
- Tensors transformations under $so(4)$
- factorization of the group SU(3)
Related Questions in LIE-ALGEBRAS
- Holonomy bundle is a covering space
- Computing the logarithm of an exponentiated matrix?
- Need help with notation. Is this lower dot an operation?
- Are there special advantages in this representation of sl2?
- $SU(2)$ adjoint and fundamental transformations
- Radical of Der(L) where L is a Lie Algebra
- $SU(3)$ irreps decomposition in subgroup irreps
- Given a representation $\phi: L \rightarrow \mathfrak {gl}(V)$ $\phi(L)$ in End $V$ leaves invariant precisely the same subspaces as $L$.
- Tensors transformations under $so(4)$
- Properties of Lie brackets
Related Questions in HOMOGENEOUS-SPACES
- How to use homogeneous coordinates and the projective plane to study the intersection of two lines
- coefficients of the sum of roots corresponding to a parabolic subgroup
- Is $O(k)\times O(n-k)$ closed in $SO(n)$?
- Homotopy groups for homogeneous spaces $SU(2n)/Sp(n)$ and $SU(2n)/SO(2n)$
- Cohomology and homology of $SU(N)/SO(N)$
- An example of a homogeneous, non-symmetric space
- Finite measure fundamental domain for a discrete group implies it's a lattice
- Different expressions of $\mathbf{CP}^n$
- Connected locally homogenous space which is not globally homogenous?
- Even Dimensional Spheres and Lie Algebra Inclusions
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
We have $\mathfrak{so}_n(K)=\{A \in M_n(K) \mid A^T+A=0\}$, and we can embed a skew-symmetric matrix of size $2n$ into one of size $2n+1$ in the obvious way, just by adding a zero column and zero row.