In 2D Poisson Equation I have example in electrostatics, $${\Delta ^2}\phi = - \frac{{{\rho _{el}}}}{\varepsilon }.$$ And I need an example of 1D Poisson Equation in daily life. In Engineering field, Physics field, etc. I will try to use a numerical method in that example. Can you help me please?
2026-02-22 19:35:40.1771788940
Example of 1-D Poisson Equation in physics field, engineering field, or others in daily life
149 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in PARTIAL-DIFFERENTIAL-EQUATIONS
- PDE Separation of Variables Generality
- Partial Derivative vs Total Derivative: Function depending Implicitly and Explicitly on Variable
- Transition from theory of PDEs to applied analysis and industrial problems and models with PDEs
- Harmonic Functions are Analytic Evan’s Proof
- If $A$ generates the $C_0$-semigroup $\{T_t;t\ge0\}$, then $Au=f \Rightarrow u=-\int_0^\infty T_t f dt$?
- Regular surfaces with boundary and $C^1$ domains
- How might we express a second order PDE as a system of first order PDE's?
- Inhomogeneous biharmonic equation on $\mathbb{R}^d$
- PDE: Determine the region above the $x$-axis for which there is a classical solution.
- Division in differential equations when the dividing function is equal to $0$
Related Questions in MATHEMATICAL-PHYSICS
- Why boundary conditions in Sturm-Liouville problem are homogeneous?
- What is the value of alternating series which I mention below
- Are there special advantages in this representation of sl2?
- Intuition behind quaternion multiplication with zero scalar
- Return probability random walk
- "Good" Linear Combinations of a Perturbed Wave Function
- Yang–Mills theory and mass gap
- Self adjoint operators on incomplete spaces
- Algebraic geometry and algebraic topology used in string theory
- Compute time required to travel given distance with constant acceleration and known initial speed
Related Questions in FOURIER-TRANSFORM
- Proof of Fourier transform of cos$2\pi ft$
- Find the convergence of series of a sequence of functions in $L^2(\mathbb{R})$
- solving a simple ODE with Fourier transform
- How can we prove that $e^{-jωn}$ converges at $0$ while n -> infinity?
- Show that a periodic function $f(t)$ with period $T$ can be written as $ f(t) = f_T (t) \star \frac{1}{T} \text{comb}\bigg(\frac{t}{T}\bigg) $
- Taking the Discrete Inverse Fourier Transform of a Continuous Forward Transform
- Arcsin of a number greater than one
- Complex numbers in programming
- Power spectrum of field over an arbitrarily-shaped country
- Computing an inverse Fourier Transform / Solving the free particle Schrödinger equation with a gaussian wave packet as initial condition
Related Questions in FAST-FOURIER-TRANSFORM
- Translation of the work of Gauss where the fast Fourier transform algorithm first appeared
- Arcsin of a number greater than one
- Unable to solve nonlinear equation using scipy.optimize.fsolve
- Fourier transform on formal series
- Optimization of a Fast Fourier Transformation-based correlation function?
- Example of 1-D Poisson Equation in physics field, engineering field, or others in daily life
- The best textbook on Fourier Transformation for beginners
- What is the intuition of FFT for polynomial multiplication?
- Which part of formula is FFT changing the basis?
- Why can FFT (NTT?) work well on polynomial ring with some integer coefficient modulus?
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
It would perhaps not formally be called Poisson's equation in 1D but the question is still valid.
There are many examples within electrostatics and heat transfer. For electrostatics let's say an infinite dielectric plate with one side grounded (Dirichlet condition) and a charge density at the other end (Neumann condition). To get a source term you can imagine having bound charges throughout the volume- this is a bit artificial but still physically valid. To get a modern touch in this you can pretend that this is some part of a touchscreen device.
In heat transfer the corresponding problem would be an infinite plate with a fixed temperature at one end, such as room temperature, and then a heat flux at the other end, for example Newton cooling. Then you can have a volumetric source term such as from some kind of electric or chemical heating. No matter the source term, in the simplest case the unit of this source term would be the same: power per unit volume; so you wouldn't need to worry about its physical reason.