Clearly, $G$ is a subgroup of the automorphism group of a Cayley graph $\Gamma$ of $G$, because $G$ acts on $\Gamma$. I know plenty of examples where $G = \text{Aut}(\Gamma)$, but what is an example where the automorphism group of $\Gamma$ is larger than $G$?
2026-02-22 22:54:18.1771800858
Example where automorphism group of Cayley graph of $G$ is not $G$
292 Views Asked by Bumbble Comm https://math.techqa.club/user/bumbble-comm/detail At
1
There are 1 best solutions below
Related Questions in ABSTRACT-ALGEBRA
- Feel lost in the scheme of the reducibility of polynomials over $\Bbb Z$ or $\Bbb Q$
- Integral Domain and Degree of Polynomials in $R[X]$
- Fixed points of automorphisms of $\mathbb{Q}(\zeta)$
- Group with order $pq$ has subgroups of order $p$ and $q$
- A commutative ring is prime if and only if it is a domain.
- Conjugacy class formula
- Find gcd and invertible elements of a ring.
- Extending a linear action to monomials of higher degree
- polynomial remainder theorem proof, is it legit?
- $(2,1+\sqrt{-5}) \not \cong \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[\sqrt{-5}]$-module
Related Questions in GROUP-THEORY
- What is the intersection of the vertices of a face of a simplicial complex?
- Group with order $pq$ has subgroups of order $p$ and $q$
- How to construct a group whose "size" grows between polynomially and exponentially.
- Conjugacy class formula
- $G$ abelian when $Z(G)$ is a proper subset of $G$?
- A group of order 189 is not simple
- Minimal dimension needed for linearization of group action
- For a $G$ a finite subgroup of $\mathbb{GL}_2(\mathbb{R})$ of rank $3$, show that $f^2 = \textrm{Id}$ for all $f \in G$
- subgroups that contain a normal subgroup is also normal
- Could anyone give an **example** that a problem that can be solved by creating a new group?
Related Questions in GEOMETRIC-GROUP-THEORY
- Clarification of proof of generating set from fundamental domain
- Does $SL_2(\mathbb{Z}[\sqrt{2}])$ have a finite presentation?
- Making linear groups trivial by adding an equal number of generators and relations
- Is There any quasi-isomorphism between $\mathbb{R}$ and $\mathbb{R}^2$?
- Polynomially sized Folner sets
- Boundary $\partial F_n$ of a free group $F_n$
- Geodesic ray converges to infinity
- Boundary of the Hyperbolic plane homeomorphic to S1
- 3D representation of A4 that preserves the unit ball
- Finite index subgroups in Amalgamated Free products
Related Questions in CAYLEY-GRAPHS
- Cayley Graph of a Group Action
- Bound on number of edges on subgraphs of Cayley graphs
- Show that a graph is arc-transitive
- Edge-transitive Cayley graphs
- Is there an example of a group G with a 1-ended Cayley graph that has one, or more, dead ends?
- Random walk on the lamplighter group
- Example where automorphism group of Cayley graph of $G$ is not $G$
- Why is the Petersen graph no Cayley graph?
- Terminology: The group(s) of symmetries of the Cayley graph of a group.
- Cayley graphs and standard sets
Trending Questions
- Induction on the number of equations
- How to convince a math teacher of this simple and obvious fact?
- Find $E[XY|Y+Z=1 ]$
- Refuting the Anti-Cantor Cranks
- What are imaginary numbers?
- Determine the adjoint of $\tilde Q(x)$ for $\tilde Q(x)u:=(Qu)(x)$ where $Q:U→L^2(Ω,ℝ^d$ is a Hilbert-Schmidt operator and $U$ is a Hilbert space
- Why does this innovative method of subtraction from a third grader always work?
- How do we know that the number $1$ is not equal to the number $-1$?
- What are the Implications of having VΩ as a model for a theory?
- Defining a Galois Field based on primitive element versus polynomial?
- Can't find the relationship between two columns of numbers. Please Help
- Is computer science a branch of mathematics?
- Is there a bijection of $\mathbb{R}^n$ with itself such that the forward map is connected but the inverse is not?
- Identification of a quadrilateral as a trapezoid, rectangle, or square
- Generator of inertia group in function field extension
Popular # Hahtags
second-order-logic
numerical-methods
puzzle
logic
probability
number-theory
winding-number
real-analysis
integration
calculus
complex-analysis
sequences-and-series
proof-writing
set-theory
functions
homotopy-theory
elementary-number-theory
ordinary-differential-equations
circles
derivatives
game-theory
definite-integrals
elementary-set-theory
limits
multivariable-calculus
geometry
algebraic-number-theory
proof-verification
partial-derivative
algebra-precalculus
Popular Questions
- What is the integral of 1/x?
- How many squares actually ARE in this picture? Is this a trick question with no right answer?
- Is a matrix multiplied with its transpose something special?
- What is the difference between independent and mutually exclusive events?
- Visually stunning math concepts which are easy to explain
- taylor series of $\ln(1+x)$?
- How to tell if a set of vectors spans a space?
- Calculus question taking derivative to find horizontal tangent line
- How to determine if a function is one-to-one?
- Determine if vectors are linearly independent
- What does it mean to have a determinant equal to zero?
- Is this Batman equation for real?
- How to find perpendicular vector to another vector?
- How to find mean and median from histogram
- How many sides does a circle have?
Assuming that $\Gamma$ is the undirected graph underlying the Cayley graph*, easy examples are found with cyclic groups:
The Cayley graph of $\mathbb{Z}_n=\langle 1\rangle$ is a regular $n$-gon. The automorphism group of a regular $n$-gon is the dihedral group of order $2n$, $D_{n}$.
The Cayley graph of $\mathbb{Z}=\langle 1\rangle$ is a straight line. The automorphism group of a straight line is the infinite dihedral group, $D_{\infty}$.
In each of these cases, $G$ has index two in $\operatorname{Aut}(\Gamma)$. The extra symmetries come from "flipping" the graph.
*Without this assumption, $G\cong\operatorname{Aut}(\Gamma)$. That is, a group $G$ is the automorphism group of any associated Cayley graph. Which is kinda the point of Cayley graphs...