I have a random variable, $Z$ with a its characteristic function given as $\varphi_Z(x)=e^{-|x|}, x\in \mathbb{R}$. How do I calculate $\mathbb{E}[|Z|]$?
- I do not have the assumption that $\mathbb{E}[|Z|]<\infty$, so I cannot use that $\mathbb{E}[Z]=\frac{1}{i}\varphi_Z(0)$, thus I am stuck.
The pdf of a Cauchy distributed random variable with parameters $\gamma=1,x_0=0$ is $$\frac1{\pi(1+x^2)}.$$
Then the pdf of $|X|$ is $$\frac2{\pi(1+x^2)}\text{ if }x\geq 0.$$
The corresponding expectation (times $\frac{\pi}2$) is
$$\int_0^{\infty}\frac x{1+x^2}\ dx=\int_0^1\frac x{1+x^2}\ dx+\int_1^{\infty}\frac x{1+x^2}\ dx>$$$$>\int_1^{\infty}\frac x{x^2+x^2}\ dx=\frac12\int_1^{\infty}\frac1x\ dx=\infty.$$