proving Kochen-Stone lemma...

1.6k Views Asked by At

Suppose $\sum P(A_k)=\infty$. Show that, if

$$\limsup_{n\to\infty}\Big(\sum_{k=1}^n P(A_k)\Big)^2\Big/\Big(\sum_{1\leq j,k\leq n} P(A_j\cap A_k)\Big)=\alpha>0$$

then $P(A_n \space\text{i.o.})\geq \alpha$

I know, $P(A_n \space\text{i.o.})=P(\limsup A_n)\geq \limsup P(A_n)$

Then if I show that $P(A_n)\geq \Big(\sum_{k=1}^n P(A_k)\Big)^2\Big/\Big(\sum_{1\leq j,k\leq n} P(A_j\cap A_k)\Big)$ for all $n$, it is done.

I know that I need to use this theorem: $Y\geq 0$ with $E\space Y^2<\infty$. Then, $P(Y>0)\geq \dfrac{(E\space Y)^2}{E\space Y^2}$ . But I do not understand how can I use that.

I took $N_n=\sum_{k=1}^{n}1_{A_k}$. Then, $E(N_n)=\sum_{k=1}^n P(A_k)$ and $E(N^2_n)=E(N_n)+\sum_{1\leq j,k\leq n} P(A_j\cap A_k)$.

I am stuck after that. Thanks for any hint or help.

Also I saw this solution, but could not understand.



After searching a lot, I found a similar problem, which states:

Suppose $\sum P(A_k)=\infty$. Show that, if

$$\limsup_{n\to\infty}\Big(\sum_{k=m+1}^n P(A_k)\Big)^2\Big/\Big(\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)\Big)=\alpha>0$$

then $P(A_n \space\text{i.o.})\geq \alpha$ for large $m$.

Now, I solved this one, in this way:

$N_n=\sum_{k=m+1}^{n}1_{A_k}$. Then, $E(N_n)=\sum_{k=m+1}^n P(A_k)$ and $E(N^2_n)=E(N_n)+\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)$

Since, $P(N_n>0)=P(\bigcup_{k=m+1}^{n}A_k)$ and, $P(N_n>0)\geq \dfrac{(E\space N_n)^2}{E\space N_n^2}$, taking limit over $n$, we get,

$$\lim_{n\to\infty}P(\bigcup_{k=m+1}^{n}A_k)=\frac{1}{\dfrac{1}{\sum_{k=m+1}^{\infty}P(A_k)}+\lim_{n\to\infty}\Big(\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)\Big)\big/\Big(\sum_{k=m+1}^n P(A_k)\Big)^2}=\lim_{n\to\infty}\Big(\sum_{k=m+1}^n P(A_k)\Big)^2\Big/\Big(\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)\Big)\space\space\big(\text{since $\sum P(A_k)=\infty$}\big)$$

Taking limit over $m$, we get:

$$\lim_{m\to\infty}\lim_{n\to\infty}P(\bigcup_{k=m+1}^{n}A_k)=\lim_{m\to\infty}\lim_{n\to\infty}\Big(\sum_{k=m+1}^n P(A_k)\Big)^2\Big/\Big(\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)\Big)=\limsup \Big(\sum_{k=m+1}^n P(A_k)\Big)^2\Big/\Big(\sum_{m+1\leq j,k\leq n} P(A_j\cap A_k)\Big)=\alpha$$

Again, since $P(\limsup A_n)\geq \limsup P(A_n)=\lim_{m\to\infty}\lim_{n\to\infty}P(\bigcup_{k=m+1}^{n}A_k)$. We finally have, $P(A_n \space\text{i.o.})\geq \alpha$, $\color{green}{\text{for large}\space m}$.

Is this okay? How can I argue the first problem from this problem? Thanks.