If $P(A_1\cap A_2\cap...\cap A_{n-1}) > 0$ so :
$$P(A_1\cap A_2\cap A_3\cap A_4) = P(A_1)\cdot P(A_2|A_1)\cdot P(A_3|A_2\cap A_1)\cdot P(A_4|A_3\cap A_2\cap A_1)$$
I don't understand how to calculate $P(A_1\cap A_2\cap...A_{n-1})$ if I don't know whether they're independent or not.
The formula you have given $$P(A_1\cap A_2\cap A_3\cap A_4) = P(A_1)\cdot P(A_2|A_1)\cdot P(A_3|A_2\cap A_1)\cdot P(A_4|A_3\cap A_2\cap A_1)$$ is a general formula. Independency is one of the special cases because if $A_1$, $A_2$, $A_3$, $A_4$ are independent, then
$P(A_2|A_1) = P(A_2)$,
$P(A_3|A_2\cap A_1) = P(A_3)$,
$P(A_4|A_3\cap A_2\cap A_1) = P(A_4)$
so $P(A_1\cap A_2\cap A_3\cap A_4) = P(A_1)\cdot P(A_2) \cdot P(A_3) \cdot P(A_4)$ as required according to the definition of independence. So you can generalize the formula you have given to $n$ events with the same logic you used for $4$ events.