Consider the function: $$\frac{3}{e^x+e^{{w_3}x}+e^{{w_3^2}x}}=\sum_{n=0}^\infty{E_{3,n}\frac{x^n}{n!}}$$ Note here that $w_3=e^{\frac{2i\pi}{3}}$ I am trying to get an explicit formula for the $E_{3,i}$. So I try and rewrite the LHS: $$\frac{3}{e^x+e^{{w_3}x}+e^{{w_3^2}x}}=\frac{3e^{-x}}{1-\left[-e^{(w_3-1)x}-e^{(w_3^2-1)x}\right]}$$ $$=3e^{-x}\sum_{n=0}^\infty(-1)^n\left[e^{(w_3-1)x}+e^{(w_3^2-1)x}\right]^n$$ $$=3e^{-x}\sum_{n=0}^\infty(-1)^n\left\{e^{(w_3-1)x}\left[1+e^{(w_3^2-w_3)x}\right]\right\}^n$$ $$=3e^{-x}\sum_{n=0}^\infty(-1)^ne^{(w_3-1)nx}\sum_{k=0}^n\binom{n}{k}e^{(w_3^2-w_3)kx}$$ $$=3\sum_{n=0}^\infty\sum_{k=0}^\infty\binom{n}{k}(-1)^ne^{[(w_3-1)n+(w_3^2-w_3)k-1]x}$$ $$=3\sum_{n=0}^\infty\sum_{k=0}^\infty\sum_{j=0}^\infty\binom{n}{k}(-1)^n[(w_3-1)n+(w_3^2-w_3)k-1]^j\frac{x^j}{j!}$$
It is here I get confused how to finish. How do i get it simpler and finalize so that I can extract the coefficient and get my formula?
EDIT:
Is better approach this? Consider Coefficient extraction:
$$E_{3,n}=n![x^n]\frac{3e^{-x}}{1-\left[-e^{(w_3-1)x}-e^{(w_3^2-1)x}\right]}$$ $$=n![x^n]3e^{-x}\sum_{r=0}^n(-1)^r\left[e^{(w_3-1)x}+e^{(w_3^2-1)x}\right]^r$$ $$...$$ $$=n![x^n]3\sum_{r=0}^n\sum_{k=0}^r\binom{r}{k}(-1)^re^{[(w_3-1)r+(w_3^2-w_3)k-1]x}$$ $$=n![x^n]3\sum_{r=0}^n\sum_{k=0}^r\sum_{j=0}^\infty\binom{r}{k}(-1)^r[(w_3-1)r+(w_3^2-w_3)k-1]^j\frac{x^j}{j!}$$ And since I"m considering the $n$-th coefficient, then i need the case when $j=n$? $$3\sum_{r=0}^n\sum_{k=0}^r\binom{r}{k}(-1)^r[(w_3-1)r+(w_3^2-w_3)k-1]^n$$ Then I can simplify at least one of the expressions in the trinomial above, since $w_3^2-w_3=-i\sqrt{3}$. So $$E_{3,n}=\sum_{r=0}^n\sum_{k=0}^r\binom{r}{k}(-3)^r[(w_3-1)r-i\sqrt{3}k-1]^n$$
I know this is not the right answer because I've put the formula into Mathematica and am not getting the correct coefficients. The coefficients are: $$1,0,0,-1,0,0,19,...$$
Here are some hints which could be helpful.
Observe, that on the other hand the correct representation provided in the answer of @amcalde
\begin{align*} \frac{1}{1+\sum_{n=1}^{\infty}\frac{x^{3n}}{(3n)!}} =\sum_{t=0}^{\infty}\left(-\sum_{n=1}^{\infty}\frac{x^{3n}}{(3n)!}\right)^t\tag{2} \end{align*}
is a valid composition of formal power series $G(x)=\frac{1}{1+x}$ and $H(x)=-\sum_{n=1}^{\infty}\frac{x^{3n}}{(3n)!}$ with $H(0)=0$.
But note, that it is not easy to find simple representations. Before trying to obtain the coefficients of the reciprocal of the rather complex expression \begin{align*} e^x+e^{{w_3}x}+e^{{w_3^2}x} \end{align*} you could try to start with the easier expression \begin{align*} e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}, \end{align*} Here we know the solution $e^{-x}=\sum_{n=0}^{\infty}(-1)^n\frac{x^n}{n!}$ and we can better see, how Kruchinins approach could be applied.